226 research outputs found

    Barriers to Physical Activity Participation Among University Students in Saudi Arabia

    Get PDF
    This study aimed to determine the level of physical activity and the effect factors that prevent university male and female students from participating in physical activities. Six hundred and eight students from the University of Hafr Al Batin in Saudi Arabia participated in the study. Male students were 263, and female students were 345 from four university branches. The participants were between 18 – 24 years of age. The measurement instrument included the International Physical Activity Questionnaire short form (IPAQ-SF) and the Barriers to Being Active Quiz (BBAQ). The results of this study indicated that approximately 33% of participants had low physical activity, 42% of college students had moderate physical activity, and 25% had high physical activity. In general, female university students had greater barriers to being physically active than male university students. In addition, barriers to being physically active for students with low physical activity were significantly higher than for those with moderate and high physical activity. Also, female students had more barriers to being physically active than male students in four barrier categories that were lack of resources, social influence, lack of willpower, and lack of skill. Finally, university students who participate in physical activity after college had less barriers to being physically active than students who did not participate in physical activity. In conclusion, understanding the barriers that prevent to be physically active helps consider and solve them in order to reach the WHOs recommendation for physical activity

    Electrodeposition and characterisation of CdS thin films using thiourea precursor for application in solar cells

    Get PDF
    CdS thin films have been successfully electrodeposited on glass/FTO substrates using acidic and aqueous solution of CdCl2.xH2O and thiourea (SC(NH2)2). The electrodeposition of CdS thin films were carried out potentiostatically using a 2-electrode system. The prepared films were characterised using X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM), Atomic force microscopy (AFM), Photoelectrochemical (PEC) cell measurements, Electrical resistivity measurements and UV-Vis spectrophotometry to study their structural, compositional, morphological, electrical and optical properties, respectively. The structural studies show that the as-deposited and annealed CdS layers are polycrystalline with hexagonal crystal structure and preferentially oriented along (200) planes. The optical studies indicate that the ED-CdS layers have direct bandgaps in the range (2.53-2.58) eV for the as-deposited and (2.42-2.48) eV after annealing at 400oC for 20 minutes in air. The morphological studies show the good coverage of the FTO surface by the CdS grains. The average grain sizes for the as-deposited and annealed layers were in the range (60-225) nm. These grains or clusters are made out of smaller nano crystallites with the sizes in the range ~(11-33) nm. The electrical resistivity shows reduction as thickness increases. The resistivity values for the as-deposited and annealed layers were in the range (0.82-4.92)×105 Ωcm. The optimum growth voltage for the CdS thin films was found to be at the cathodic potential of 797 mV with respect to the graphite anode. No visible precipitations of elemental S or CdS particles were observed in the deposition electrolyte showing a stable bath using thiourea during the growth

    Biophysical and electrochemical studies of protein-nucleic acid interactions

    Get PDF
    This review is devoted to biophysical and electrochemical methods used for studying protein-nucleic acid (NA) interactions. The importance of NA structure and protein-NA recognition for essential cellular processes, such as replication or transcription, is discussed to provide background for description of a range of biophysical chemistry methods that are applied to study a wide scope of protein-DNA and protein-RNA complexes. These techniques employ different detection principles with specific advantages and limitations and are often combined as mutually complementary approaches to provide a complete description of the interactions. Electrochemical methods have proven to be of great utility in such studies because they provide sensitive measurements and can be combined with other approaches that facilitate the protein-NA interactions. Recent applications of electrochemical methods in studies of protein-NA interactions are discussed in detail

    Diversity, distribution and conservation of the terrestrial reptiles of Oman (Sauropsida, Squamata)

    Get PDF
    All authors: Salvador Carranza , Meritxell Xipell, Pedro Tarroso, Andrew Gardner, Edwin Nicholas Arnold, Michael D. Robinson, Marc Simó-Riudalbas, Raquel Vasconcelos, Philip de Pous, Fèlix Amat, Jiří Šmíd, Roberto Sindaco, Margarita Metallinou †, Johannes Els, Juan Manuel Pleguezuelos, Luis Machado, David Donaire, Gabriel Martínez, Joan Garcia-Porta, Tomáš Mazuch, Thomas Wilms, Jürgen Gebhart, Javier Aznar, Javier Gallego, Bernd-Michael Zwanzig, Daniel Fernández-Guiberteau, Theodore Papenfuss, Saleh Al Saadi, Ali Alghafri, Sultan Khalifa, Hamed Al Farqani, Salim Bait Bilal, Iman Sulaiman Alazri, Aziza Saud Al Adhoobi, Zeyana Salim Al Omairi, Mohammed Al Shariani, Ali Al Kiyumi, Thuraya Al Sariri, Ahmed Said Al Shukaili, Suleiman Nasser Al Akhzami.In the present work, we use an exceptional database including 5,359 records of 101 species of Oman’s terrestrial reptiles together with spatial tools to infer the spatial patterns of species richness and endemicity, to infer the habitat preference of each species and to better define conservation priorities, with especial focus on the effectiveness of the protected areas in preserving this unique arid fauna. Our results indicate that the sampling effort is not only remarkable from a taxonomic point of view, with multiple observations for most species, but also for the spatial coverage achieved. The observations are distributed almost continuously across the two-dimensional climatic space of Oman defined by the mean annual temperature and the total annual precipitation and across the Principal Component Analysis (PCA) of the multivariate climatic space and are well represented within 17 out of the 20 climatic clusters grouping 10% of the explained climatic variance defined by PC1 and PC2. Species richness is highest in the Hajar and Dhofar Mountains, two of the most biodiverse areas of the Arabian Peninsula, and endemic species richness is greatest in the Jebel Akhdar, the highest part of the Hajar Mountains. Oman’s 22 protected areas cover only 3.91% of the country, including within their limits 63.37% of terrestrial reptiles and 50% of all endemics. Our analyses show that large areas of the climatic space of Oman lie outside protected areas and that seven of the 20 climatic clusters are not protected at all. The results of the gap analysis indicate that most of the species are below the conservation target of 17% or even the less restrictive 12% of their total area within a protected area in order to be considered adequately protected. Therefore, an evaluation of the coverage of the current network of protected areas and the identification of priority protected areas for reptiles using reserve design algorithms are urgently needed. Our study also shows that more than half of the species are still pending of a definitive evaluation by the International Union for Conservation of Nature (IUCN).This work was funded by grants CGL2012-36970, CGL2015-70390-P from the Ministerio de Economía y Competitividad, Spain (cofunded by FEDER) to SC, the project Field study for the conservation of reptiles in Oman, Ministry of Environment and Climate Affairs, Oman (Ref: 22412027) to SC and grant 2014-SGR-1532 from the Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat de Catalunya to SC. MSR is funded by a FPI grant from the Ministerio de Economía y Competitividad, Spain (BES-2013-064248); RV, PT and LM were funded by Fundação para a Ciência e Tecnologia (FCT) through post-doc grants (SFRH/BPD/79913/2011) to RV, (SFRH/BPD/93473/2013) to PT and PhD grant (SFRH/BD/89820/2012) to LM, financed by Programa Operacional Potencial Humano (POPH) – Quadro de Referência Estrategico Nacional (QREN) from the European Social Fund and Portuguese Ministerio da Educação e Ciência

    Selective and low temperature transition metal intercalation in layered tellurides

    Get PDF
    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80?°C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid

    A review on development and application of plant-based bioflocculants and grafted bioflocculants

    Get PDF
    Flocculation is extensively employed for clarification through sedimentation. Application of eco-friendly plant-based bioflocculants in wastewater treatment has attracted significant attention lately with high removal capability in terms of solids, turbidity, color, and dye. However, moderate flocculating property and short shelf life restrict their development. To enhance the flocculating ability, natural polysaccharides derived from plants are chemically modified by inclusion of synthetic, nonbiodegradable monomers (e.g., acrylamide) onto their backbone to produce grafted bioflocculants. This review is aimed to provide an overview of the development and flocculating efficiencies of plant-based bioflocculants and grafted bioflocculants for the first time. Furthermore, the processing methods, flocculation mechanism, and the current challenges are discussed. All the reported studies about plant-derived bioflocculants are conducted under lab-scale conditions in wastewater treatment. Hence, the possibility to apply natural bioflocculants in food and beverage, mineral, paper and pulp, and oleo-chemical and biodiesel industries is discussed and evaluated

    The genome landscape of indigenous African cattle

    Get PDF
    Background: The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems. Results: We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/ or pathways controlling anemia and feeding behavior in the trypanotolerant N’Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds. Conclusions: Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic
    corecore