54 research outputs found

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Roadmap on energy harvesting materials

    Get PDF
    Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere

    Infrared dielectric functions and optical phonons of wurtzite YxAl1-xN (0 <= x <= 0.22)

    No full text
    YAlN is a new member of the group-III nitride family with potential for applications in next generation piezoelectric and light emitting devices. We report the infrared dielectric functions and optical phonons of wurtzite (0001) YxAl1-xN epitaxial films with 0 <= x <= 0.22. The films are grown by magnetron sputtering epitaxy on c-plane Al2O3 and their phonon properties are investigated using infrared spectroscopic ellipsometry and Raman scattering spectroscopy. The infrared-active E-1(TO) and LO, and the Raman active E-2 phonons are found to exhibit one-mode behavior, which is discussed in the framework of the MREI model. The compositional dependencies of the E-1(TO), E-2 and LO phonon frequencies, the high-frequency limit of the dielectric constant, epsilon(infinity), the static dielectric constant, epsilon(0), and the Born effective charge Z(B) are established and discussed

    Piezoelectric characterization of Sc0.26Al0.74N layers on Si (001) substrates

    No full text
    Scandium aluminum nitride (ScAlN) films have been synthesized by pulsed-DC reactive magnetron sputtering. The degree of c-axis orientation as well as piezoelectric characteristics of the Sc0.26Al0.74N thin films grown on Si (001) at various discharge powers and processing pressures values have been investigated. According to x-ray diffraction (XRD) measurements, the texture of the as-grown Sc0.26Al0.74N thin films becomes more prominent in the [0001]-direction at the highest target power (700W) and at the lowest processing pressure (4 mTorr). The piezoelectric response, as determined by measuring the d 33 piezoelectric constant, shows a maximum value of−12 pC/Nalso at 4 m Torr and 700 W, confirming a direct correlation between the d33 piezoelectric constant and the degree of orientation in the [0001]-direction. The atomic concentration of Sc and Al in the synthesized ScAlNthin film, determined by secondary ion mass spectroscopy (SIMS), reveals a Sc concentration lower than in the ScAl alloy target. The piezoresponse force microscopy (PFM) shows homogeneous polarity distribution with no inversion domains. The piezoelectric layers have been used to fabricate and measure surface acoustic wave (SAW) resonators on a Sc0.26Al0.74N/Si (001) bilayer system with resonance frequency of 1.4 GHz and coupling coefficient of 0.567. Such characteristic in the frequency response reveals the potential of these materials for advanced SAW devices in applications such as next generation (5G) wireless communication systems

    Electronic structure of RE

    No full text

    Ab initio calculations and experimental study of piezoelectric YxIn1-xN thin films deposited using reactive magnetron sputter epitaxy

    No full text
    By combining theoretical prediction and experimental verification we investigate the piezoelectric properties of yttrium indium nitride (YxIn1-xN). Ab initio calculations show that the YxIn1-xN wurtzite phase is lowest in energy among relevant alloy structures for 0 <= x <= 0.5. Reactive magnetron sputter epitaxy was used to prepare thin films with Y content up to x=0.51. The composition dependence of the lattice parameters observed in the grown films is in agreement with that predicted by the theoretical calculations confirming the possibility to synthesize a wurtzite solid solution. An AIN buffer layer greatly improves the crystalline quality and surface morphology of subsequently grown YxIn1-xN films. The piezoelectric response in films with x=0.09 and x=0.14 is observed using piezoresponse force microscopy. Theoretical calculations of the piezoelectric properties predict YxIn1-xN to have comparable piezoelectric properties to ScxAl1-xN
    corecore