1,464 research outputs found
High-resolution microbial community reconstruction by integrating short reads from multiple 16S rRNA regions
The emergence of massively parallel sequencing technology has revolutionized microbial profiling, allowing the unprecedented comparison of microbial diversity across time and space in a wide range of host-associated and environmental ecosystems. Although the high-throughput nature of such methods enables the detection of low-frequency bacteria, these advances come at the cost of sequencing read length, limiting the phylogenetic resolution possible by current methods. Here, we present a generic approach for integrating short reads from large genomic regions, thus enabling phylogenetic resolution far exceeding current methods. The approach is based on a mapping to a statistical model that is later solved as a constrained optimization problem. We demonstrate the utility of this method by analyzing human saliva and Drosophila samples, using Illumina single-end sequencing of a 750 bp amplicon of the 16S rRNA gene. Phylogenetic resolution is significantly extended while reducing the number of falsely detected bacteria, as compared with standard single-region Roche 454 Pyrosequencing. Our approach can be seamlessly applied to simultaneous sequencing of multiple genes providing a higher resolution view of the composition and activity of complex microbial communities
Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents
Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs
Deep generative modeling for single-cell transcriptomics.
Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task
Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective
This Report has a number of inter-related general purposes. One is to explore the extent to which food, nutrition, physical activity, and body composition modify the risk of cancer, and to specify which factors are most important. To the extent that environmental factors such as food, nutrition, and physical activity influence the risk of cancer, it is a preventable disease. The Report specifies recommendations based on solid evidence which, when followed, will be expected to reduce the incidence of cancer
Optimal spaces for those living with dementia : principles and evidence
This paper represents a synthesis of diverse and disparate evidence in the research literature that provide insights into the impacts of aspects of the built environment on the wellbeing of those living with dementia. The individually focused findings are structured into a set of practical design parameters, driven by three overarching needs-driven design principles, namely: manageable cognitive load, clear sequencing, and appropriate level of stimulation. These needs are contextualized within a general model that suggests that action in any one area (such as the built environment) also has to take into account other key dimensions, namely any support from the caring / social environment and any pharmacological treatment. Addressing these elements holistically should maximize the opportunity to improve the quality of life of the individual. This paper, however, explicitly focuses on the built environment
Uncovering the nutritional landscape of food
Recent progresses in data-driven analysis methods, including network-based
approaches, are revolutionizing many classical disciplines. These techniques
can also be applied to food and nutrition, which must be studied to design
healthy diets. Using nutritional information from over 1,000 raw foods, we
systematically evaluated the nutrient composition of each food in regards to
satisfying daily nutritional requirements. The nutrient balance of a food was
quantified herein as nutritional fitness, using the food's frequency of
occurrence in nutritionally adequate food combinations. Nutritional fitness
offers prioritization of recommendable foods within a global network of foods,
in which foods are connected based on the similarities of their nutrient
compositions. We identified a number of key nutrients, such as choline and
alpha-linolenic acid, whose levels in foods can critically affect the foods'
nutritional fitness. Analogously, pairs of nutrients can have the same effect.
In fact, two nutrients can impact the nutritional fitness synergistically,
although the individual nutrients alone may not. This result, involving the
tendency among nutrients to show correlations in their abundances across foods,
implies a hidden layer of complexity when exploring for foods whose balance of
nutrients within pairs holistically helps meet nutritional requirements.
Interestingly, foods with high nutritional fitness successfully maintain this
nutrient balance. This effect expands our scope to a diverse repertoire of
nutrient-nutrient correlations, integrated under a common network framework
that yields unexpected yet coherent associations between nutrients. Our
nutrient-profiling approach combined with a network-based analysis provides a
more unbiased, global view of the relationships between foods and nutrients,
and can be extended towards nutritional policies, food marketing, and
personalized nutrition.Comment: Supplementary material is available at the journal websit
Two Neuronal Nicotinic Acetylcholine Receptors, α4β4 and α7, Show Differential Agonist Binding Modes
Nicotinic acetylcholine receptors (nAChRs) are pentameric, neurotransmitter-gated ion channels responsible for rapid excitatory neurotransmission in the central and peripheral nervous systems, resulting in skeletal muscle tone and various cognitive effects in the brain. These complex proteins are activated by the endogenous neurotransmitter ACh as well as by nicotine and structurally related agonists. Activation and modulation of nAChRs has been implicated in the pathology of multiple neurological disorders, and as such, these proteins are established therapeutic targets. Here we use unnatural amino acid mutagenesis to examine the ligand binding mechanisms of two homologous neuronal nAChRs: the α4β4 and α7 receptors. Despite sequence identity among the residues that form the core of the agonist-binding site, we find that the α4β4 and α7 nAChRs employ different agonist-receptor binding interactions in this region. The α4β4 receptor utilizes a strong cation-π interaction to a conserved tryptophan (TrpB) of the receptor for both ACh and nicotine, and nicotine participates in a strong hydrogen bond with a backbone carbonyl contributed by TrpB. Interestingly, we find that the α7 receptor also employs a cation-π interaction for ligand recognition, but the site has moved to a different aromatic amino acid of the agonist-binding site depending on the agonist. ACh participates in a cation-π interaction with TyrA, whereas epibatidine participates in a cation-π interaction with TyrC2
Normalizing single-cell RNA sequencing data: challenges and opportunities
Single-cell transcriptomics is becoming an important component of the molecular biologist's toolkit. A critical step when analyzing data generated using this technology is normalization. However, normalization is typically performed using methods developed for bulk RNA sequencing or even microarray data, and the suitability of these methods for single-cell transcriptomics has not been assessed. We here discuss commonly used normalization approaches and illustrate how these can produce misleading results. Finally, we present alternative approaches and provide recommendations for single-cell RNA sequencing users
Syndecan 4 Is Involved in Mediating HCV Entry through Interaction with Lipoviral Particle-Associated Apolipoprotein E
Hepatitis C virus (HCV) is a major cause of liver disease worldwide and HCV infection represents a major health problem. HCV associates with host lipoproteins forming host/viral hybrid complexes termed lipoviral particles. Apolipoprotein E (apoE) is a lipoprotein component that interacts with heparan sulfate proteoglycans (HSPG) to mediate hepatic lipoprotein uptake, and may likewise mediate HCV entry. We sought to define the functional regions of apoE with an aim to identify critical apoE binding partners involved in HCV infection. Using adenoviral vectors and siRNA to modulate apoE expression we show a direct correlation of apoE expression and HCV infectivity, whereas no correlation exists with viral protein expression. Mutating the HSPG binding domain (HSPG-BD) of apoE revealed key residues that are critical for mediating HCV infection. Furthermore, a novel synthetic peptide that mimics apoE's HSPG-BD directly and competitively inhibits HCV infection. Genetic knockdown of the HSPG proteins syndecan (SDC) 1 and 4 revealed that SDC4 principally mediates HCV entry. Our data demonstrate that HCV uses apoE-SDC4 interactions to enter hepatoma cells and establish infection. Targeting apoE-SDC interactions could be an alternative strategy for blocking HCV entry, a critical step in maintaining chronic HCV infection
- …
