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Abstract

Hepatitis C virus (HCV) is a major cause of liver disease worldwide and HCV infection represents a major health problem.
HCV associates with host lipoproteins forming host/viral hybrid complexes termed lipoviral particles. Apolipoprotein E
(apoE) is a lipoprotein component that interacts with heparan sulfate proteoglycans (HSPG) to mediate hepatic lipoprotein
uptake, and may likewise mediate HCV entry. We sought to define the functional regions of apoE with an aim to identify
critical apoE binding partners involved in HCV infection. Using adenoviral vectors and siRNA to modulate apoE expression
we show a direct correlation of apoE expression and HCV infectivity, whereas no correlation exists with viral protein
expression. Mutating the HSPG binding domain (HSPG-BD) of apoE revealed key residues that are critical for mediating HCV
infection. Furthermore, a novel synthetic peptide that mimics apoE’s HSPG-BD directly and competitively inhibits HCV
infection. Genetic knockdown of the HSPG proteins syndecan (SDC) 1 and 4 revealed that SDC4 principally mediates HCV
entry. Our data demonstrate that HCV uses apoE-SDC4 interactions to enter hepatoma cells and establish infection.
Targeting apoE-SDC interactions could be an alternative strategy for blocking HCV entry, a critical step in maintaining
chronic HCV infection.
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Introduction

Hepatitis C virus (HCV) infection is a major worldwide cause of

liver disease, including liver cirrhosis and hepatocellular carcino-

ma [1]. The current standard of care treatment is composed of

pegylated interferon alpha, ribavirin, and one of the newly

developed direct-acting antiviral (DAA) agents, telapravir or

boceprevir, but this regimen is limited by prohibitively high costs,

resistance mutations, and unwanted side effects [2,3]. One

hallmark of HCV is its unique association with host lipoproteins

including very-low density lipoproteins (VLDL), in host/viral

hybrid complexes termed lipoviral particles. HCV relies on

elements of VLDL assembly for viral production, and the virion

is associated with the apolipoproteins (apo), apoE, apoB, apoAI,

and apoCI [4,5,6]. Evidence indicates that HCV utilizes aspects of

lipoprotein metabolism as a mechanism of hepatocyte egress and

in the early steps of infection [7].

ApoE is a VLDL component that plays a key role in the HCV

life cycle. We have previously shown that apoE interacts with the

HCV NS5A protein and is critical for HCV assembly and release

[8], while others have demonstrated a role for apoE in HCV entry

[9,10]. It has been demonstrated that apoE interacts with heparan

sulfate proteogycans HSPG [10] and the low-density lipoprotein

receptor (LDL-R) [11] during HCV hepatocyte entry. However,

the role of LDL-R is disputed [12], and identifying the key HSPG

family member involved during HCV entry remains unclear.

ApoE is a 299 amino acid protein that has an N-terminal receptor-

binding domain (RBD) and a C-terminal lipid-binding domain

(LBD) (Fig. 1A). Within the RBD, there is a small region enriched

in positively charged amino acids that interacts with heparan

sulfate proteoglycans (HSPG) on the cell surface. Evidence

indicates that this interaction is an important first step in hepatic

clearance of VLDL remnant lipoproteins, particularly with a

subset of HSPGs, syndecans (SDCs). SDCs consist of core

transmembrane proteins with negatively charged heparan sulfate

side chains post-translationally added to the extracellular moiety.

Four SDCs (1 through 4) are found in humans. SDC1 is highly

expressed in epithelial cells such as hepatocytes, SDC2 in

endothelia and fibroblasts, and SDC3 in neuronal tissues, while

SDC4 is predominantly co-expressed with other SDCs. It has been

shown that the SDC family is involved in wound healing and

tumor progression [13]. Moreover, SDC1 is the primary

proteoglycan receptor mediating binding, uptake, and degradation

of VLDL both in vitro [14] and in vivo [15,16]. Since HCV utilizes

aspects of lipoprotein metabolism and apoE is on the virion

surface, we aimed to determine the apoE-interacting host factor

that mediates HCV infection on the hepatocyte surface.
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Experimental Procedures

Cell Lines, Plasmids and Reagents
HEK293T and Huh7.5.1 cells were cultured as described [17].

Plasmid pFK-Luc-Jc1 (Luc-Jc1) and pFK-Jc1 (Jc1) constructs have

been previously described [18,19,20]. HA-SDC4 and HA-SDC4-

Y180L plasmids were kind gifts from Martin J. Humphries,

University of Manchester [21]. Human apoE-encoding cDNA was

obtained from OriGen USA (Rockville, MD, USA). An apoE-

derived di-peptide (apoE-dp) corresponding to apoE region 141–

149 (LRKLRKRLLLRKLRKRLL) was synthesized (Inserm

U977 Strasbourg, France), and purified by high pressure liquid

chromatography (HPLC) to 95% purity. The peptide contains N-

terminal acetyl and C-terminal amide capping groups. Control

peptide (CYEKFKTPKDKTKM) was synthesized by Proteo-

Genix SAS (Schiltigheim, France) and purified by HPLC to 82%

purity. Heparin (H3393) was obtained from Sigma-Aldrich

(Sigma-Aldrich, St Louis, USA). Human VLDL (BT-909) was

purchased from Biomedical Technologies Inc. (Stoughton, MA

02072 USA).

Antibodies
Mouse monoclonal anti-apoE (ab8226) and mouse monoclonal

anti-beta actin (ab1906) antibodies were obtained from Abcam

(Paris, France). Mouse monoclonal anti-HA-tag (clone F-7, sc-

7392) antibody was obtained from Santa Cruz Biotechnology, Inc.

Anti-mouse IgG coupled to horseradish peroxidase (HRP)

(NXA931) and ECL Western blotting detection reagents

(RPN2106) were obtained from GE Healthcare.

Figure 1. Ectopic expression of apoE dose-dependently stimulates HCV production. (A) Schematic of apoE mutants and apoE-derived
peptide sequence. Receptor binding domain (RBD: amino acids 136–150) and heparan sulfate proteoglycan binding domain (HSPG-BD: amino acids
142–147) are represented. Mutations of the apoE HSPG-BD (apoEDHSPG-BD, apoE K143A, K146A, and apoE R142A, R145A) were generated by site-
directed mutagenesis. (B) Huh7.5.1 cells were either co-electroporated (Co-EP) with luciferase-encoding HCV RNA (Luc-Jc1) and siRNA targeting
endogenous apoE expression (siApoE) (2–7) or mock-transfected (1). 24 h post-transfection, cells were transduced with adenoviruses expressing GFP
(Ad-CTRL) as a control, or with increasing concentrations of adenoviruses expressing wt apoE (Ad-apoE-wt), representing 1:100–1:5 dilutions, and
numbered from 2 to 7 according to increasing concentration. Three days post-transduction, intracellular apoE, actin and HCV core expression was
determined by immunoblot of cell lysates. (C) Extracellular culture supernatants of the cells from (B) with corresponding number designations were
concentrated by sucrose cushion. ApoE, HCV E2, and core expression were tested by Western blot. (D) HCV infection from apoE modulated cells was
conducted by exposing naı̈ve Huh7.5.1 cells to culture media from cells transfected with HCV RNA and transduced with increasing concentrations of
Ad-apoE-wt or with Ad-CTRL with number designations corresponding to (B) and (D). 3d post-infection, infectivity was measured by luciferase
reporter activity. HCVcc infection is expressed as a percentage relative to apoE-silenced cells transduced with Ad-CTRL. Results are expressed as
mean6SD of the experiment performed in triplicate (** = P,0.001).
doi:10.1371/journal.pone.0095550.g001
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RNA Interference Assay
Specific siRNA targeting endogenous apoE 39 UTR (siApoE)

(59 CUGCAGCGGGAGACCCUGU 39), specific siRNA target-

ing syndecan-1 (siSDC1, L-010621), CD81 (siCD81, L-017257-

00-005), syndecan-4 (siSDC4, M-003706-01), or each siSDC4

aliquoted individually (siSDC4-1 to siSDC4-4, J-003706-07 to J-

003706-10 respectively), and scrambled control siRNAs (siCTRL,

DY-547) were purchased from Dharmacon (Dharmacon Inc.,

Chicago, IL USA). siRNAs were transfected using Lipofectamine

RNAiMAX transfection protocol purchased from Life technolo-

gies, or electroporated as described previously [8]. Three days

post-transfection, target gene expression was tested by quantitative

RT-PCR using TaqMan Gene Expression Assay (SDC1:

PN4453320, SDC4: PN4448892) purchased from Life technolo-

gies or by Western blot as described previously [8].

Recombinant Adenoviruses
The recombinant adenoviral genomes were generated as

infectious plasmids by homologous recombination in E. coli, as

described previously [22]. Briefly, a PCR-amplified fragment

encoding siApoE-resistant cDNA, HA-SDC4 wt or HA-SDC4

Y180L was inserted into the adenoviral shuttle plasmid pTG13387

(US patent 2002/0019051 A1). In the resulting vector, cDNAs are

under the control of a cytomegalovirus promoter, and their

sequences are surrounded by adenoviral sequences (nt 1 to 458

and nt 3328 to 5788 of the adenovirus type 5 (Ad5) genome). All

apoE encoding inserts were siApoE resistant and were obtained by

site-directed mutagenesis. The cDNAs encoding shuttle plasmids

obtained were used for homologous recombination with adeno-

viral sequences of the backbone vector pTG6624 [22]. The

resulting adenoviral plasmids contain the full-length adenoviral

genome with a deletion in E3 (nt 28592 to 30470). The E1 region

(nt 459 to 3327) is replaced with the sequence encoding apoE-wt,

apoE-mutant, HA-SDC4-wt, or HA-SDC4-Y180L. Recombinant

adenoviruses Ad-apoE-wt, Ad-apoE-mutant, Ad-HA-SDC4-wt, or

Ad-HA-SDC4-Y180L were generated by transfection of these

plasmids into the 293T packaging cell line after PacI digestion. Ad-

CTRL, which was used as a control, is a recombinant adenovirus

encoding green fluorescent protein (GFP) [23]. Preparation of

adenoviruses was previously described [24].

HCV Production and Infectivity
Luc-Jc1 or Jc1 HCV RNA was obtained by T7 in vitro

transcription of plasmid pFK-Luc-Jc1 or pFK-Jc1, respectively.

Huh7.5.1 cells were co-electroporated with Luc-Jc1 RNA and

siApoE or siCTRL, as described previously [8], to obtain cell-

culture derived HCV particles (HCVcc). The next day, cells were

transduced with adenoviruses expressing apoE-wt, apoE-mutants,

or GFP as a control. Three days post-transduction, HCV

replication was assessed using luciferase assay of the cell lysates

as previously described [8]. Cell supernatants were collected and

infectivity was quantified by luciferase assay, 3d post-infection of

naı̈ve Huh7.5.1 cells [8]. The presence of HCVcc in the cell

supernatants was verified following sucrose cushion virion

concentration, as previously described [8]. Briefly, HCVcc were

purified from cell culture supernatant on a 20% sucrose cushion

by ultracentrifugation using a SW 55 Ti rotor (Beckman Coulter,

Inc.) at 30,000 rpm for 4 h at 4uC. The viral pellet was

resuspended in lysis buffer. Levels of apoE, HCV glycoprotein

E2, and HCV core protein were compared by Western blot.

Analysis of HCVcc Binding
Huh7.5.1 cells were incubated with Luc-Jc1 HCVcc at a

multiplicity of infection (MOI) of one for 1 h at 4uC. After

thorough washing with PBS, HCVcc binding was analyzed

immediately by qRT-PCR [17], or HCVcc infection was

measured 48 h later by luciferase assay [8]. VLDL competition

was conducted by mixing Luc-Jc1 HCVcc particles with VLDL at

serial dilutions prior to incubation on naı̈ve Huh7.5.1 cells for 2 h

at 4uC. After three washes with PBS, HCVcc binding was

analyzed immediately by quantification for viral RNA using qRT-

PCR [17].

HCV pseudoparticle (HCVpp) production and

assay. Luciferase-encoding HCVpp strain J6 were produced

as previously described [17]. HCVpp infection was performed

using the same protocol as HCVcc infection above. Briefly, 3 days

after siRNA transfection, transfected-cells were infected with

HCVpp for 4 h at 37uC. Three days post-infection, the cells were

lysed and HCVpp entry was analyzed using luciferase assay.

Syndecan 4 Complementation Assay
Huh7.5.1 cells were transfected with oligonucleotides to

knockdown expression of SDC4 (siSDC4) or a siRNA control

(siCTRL). 24 h post-transfection, cells were transduced with

adenoviruses expressing either GFP (Ad-CTRL) as a control,

SDC4-wt, or SDC4-Y180L. Three days post-transduction,

tranfected and transduced cells were infected with Luc-Jc1 HCVcc

for 4 h at 37uC. Three days post-infection, infectivity was

measured by luciferase reporter activity. HCVcc infection is

expressed as a percentage relative to siCTRL-silenced cells

transduced with Ad-CTRL.

Results

Modulation of apoE Expression Regulates HCV Infectivity
To identify apoE binding partners involved in the HCV life

cycle, we established a functional trans-complementation assay to

replace endogenous apoE expression with ectopic expression of

wild-type or mutated apoE. Coupling this system with HCVcc

expression allowed mapping of apoE functional domains that are

important for HCV infection and production (Fig. 1A). Endog-

enous apoE was silenced by siRNA (siApoE) confirmed by

Western blot (Fig. 1B) in HCV transfected cells, then trans-

complemented by increasing concentrations of apoE via adeno-

viral transduction lacking sequences prone to siApoE (Fig. 1B).

Intracellular apoE levels increased in a dose-dependent manner

depending on Ad-apoE-wt concentration (Fig. 1B) whereas HCV

core protein quantities were not altered indicating that apoE does

not alter expression or stability of this protein (Fig. 1B). To

determine how altering apoE expression affects apoE and HCV

production, extracellular components were concentrated on a

sucrose cushion. While unmanipulated Huh7.5.1 produce basal

levels of apoE, modulation and trans-complementation can

diminish or stimulate this production (Fig. 1C). This change was

in contrast to HCV glycoprotein E2 and core levels produced,

which were unaffected by altered apoE expression (Fig. 1C).

Interestingly, HCV infectivity correlated strongly with apoE

expression levels without reaching saturation (Fig. 1D), while

there was no such correlation with viral proteins. These results

clearly indicate the key role of apoE expression in assembly and

production of infectious HCV particles.
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The HSPG Binding Domain of apoE is Critical for HCV
Entry

Since we show that apoE plays a central role in HCV infection,

we endeavored to map regions within apoE that mediate this

function. It is known that a key role of apoE is to mediate TRL

remnant uptake by hepatocytes through binding HSPG via a

positively charged region of the protein termed HSPG binding

domain (HSPG-BD). With the concept that HCV may co-opt this

entry pathway, we made adenoviral vectored apoE mutants with

either deleted HSPG-BD (Ad-apoEDHSPG-BD), or two mutants

with cationic residues lysines or arginines replaced by alanines

(apoEK143A,K146A or apoER142A,R145A) (Fig. 1A). The introduction

of these mutations did not affect intracellular transfected HCV

RNA levels relative to uncomplemented apoE knockdown or

apoE-wt, revealing that apoE modulation does not alter HCV

replication (Fig. 2A). Western blot analysis determined that apoE

expression of the mutants was comparable to wt, indicating that

the mutants were stable (Fig. 2B). By concentrating culture media

components of the cells by ultracentrifugation on a sucrose

cushion, we determined that despite robust apoE production from

all the mutants, revealed by Western blot (Fig. 2C), only apoE-wt

retained the capacity to mediate HCV infection (Fig. 2D). These

conclusive results demonstrate that HCV infection is dependent on

the positively charged residues within the HSPG-BD of apoE.

Since these results indicate that apoE mediates infection

through basic residues contained in the HSPG-BD, we generated

an apoE derived peptide (apoE-dp) consisting of a repeated

sequence of the HSPG-BD (Fig. 1A). We aimed to define that

HSPG-BD actively mediates HCV infection, and to rule out

conformational changes that may result from introducing muta-

tions. As expected, apoE-dp was capable of out-competing HCV

binding on the surface of hepatoma cells to a similar degree as the

HCV entry inhibitor heparin (Fig. 2E) [25], whereas control

peptide (CTRL peptide) had no effect on HCV infection. Through

inhibiting binding, apoE-dp likewise inhibited HCV infection in a

dose-dependent manner (Fig. 2F).

Syndecan 4 Mediates HCV Entry
Through defining apoE regions important for HCV entry, we

significantly narrowed host binding partners to those that would

bind this region and are present on the basolateral surface of

hepatocytes. Two proteins meet this criteria; SDC1 and SDC4

[13]. To investigate the role of these factors in HCV entry, we

knocked down expression using specific siRNA oligonucleotides to

either SDC1, SDC4, or established HCV entry factor CD81, as a

positive control. While confirming knockdown by qRT-PCR, we

observed an apparent compensation by the alternative syndecan

i.e. SDC4 increased when SDC1 was silenced and vice versa

(Fig. 3A). Knockdown of CD81 also resulted in modest

transcriptional stimulation of SDC4 (Fig. 3A). The effect of

syndecan modulation of target cells had a clear impact on HCVcc

infection, with knockdown of SDC1 only modestly affecting the

capacity for infection, whereas knockdown of SDC4 resulted in

more than 65% decrease in infection, as quantified by qRT-PCR

(Fig. 3B). In order to confirm that viral entry inhibition was not

due to off-target silencing, we individually tested the 4 siRNA

contributing to the siRNA SDC4 pool previously used. All 4

siRNA targeting SDC4 were able to individually decrease HCV

infection (Fig. 3C). Moreover, we also performed a SDC4

complementation assay. First, Huh7.5.1 cells were transfected

with a siRNA control (siCTRL) or oligonucleotides targeting

SDC4. The following day, these cells were transduced with

adenoviral vectors expressing GFP as a control (Ad-CTRL), HA

epitope tagged SDC4-wt (Ad-HA-SDC4-wt), or HA epitope

tagged SDC4-Y180L (Ad-HA-SDC-Y180L), a mutation impor-

tant in integrin recycling and therefore potentially interesting in

the context of HCV infection [21,26]. Three days post-transduc-

tion, these cells were then challenged with HCVcc Luc-Jc1. As

expected, transfections with siCTRL and transductions with Ad-

CTRL had no effect on viral entry, whereas the silencing of SDC4

and transduction by Ad-CTRL markedly decreased HCV entry

(Fig. 3D). Cells transfected with siSDC4 and transduced with

either Ad-HA-SDC4-wt or Ad-HA-SDC4-Y180L partially res-

cued viral entry (Fig. 3D). The point mutation SDC4-Y180L had

no effect on viral entry suggesting that this tyrosine is not involved

in HCV entry. This complementation definitively shows that

SDC4 is important in HCV infection.

We sought to further define the mechanism of HCV interaction

with syndecans by using the HCV pseudoparticle system

(HCVpp), which are produced independently of apoE and

lipoprotein association [27]. Cells with silenced SDC1 expression

were equally capable of HCVpp infection as cells that were either

mock transfected or transfected with a nonspecific sequence as a

control for silencing (Fig. 3E). However, silencing SDC4 resulted

in a modest but significant decrease in the cells’ capacity for

HCVpp infection (Fig. 3E). These results, taken together, indicate

that SDC4 is a critical factor for apoE-mediated HCV entry, while

SDC1 contributes to a lesser degree in mediating HCV infection.

Furthermore, SDC4 may have an alternate function that is not

dependent on apoE, as evidenced by the results obtained with

HCVpp. This may be in part due to HCV E2 glycoprotein

binding to HSPG [28].

To further distinguish between HCV usage of SDC1 and

SDC4, we took advantage of the fact that SDC1 is the primary

receptor for VLDL uptake [15]. Unlike SDC4 knockdown,

silencing of SDC1 results in greatly diminished VLDL attachment

and uptake into cells [14]. If SDC1 is the primary factor for HCV

attachment, HCV and VLDL would act competitively. However,

addition of increasing concentrations of VLDL had only a modest

effect on competition of HCV attachment to cells (Fig. 3F). While

the modest effect may point to a limited use of SDC1, these results

are more consistent with SDC1 being excluded as the primary

HSPG involved in HCV attachment.

Taken together, our results indicate that HCV infection is

mediated by basic residues within HSPG-BD of apoE interacting

primarily with SDC4 on the surface of hepatoma cells.

Discussion

This study clearly demonstrates for the first time that HCV

utilizes the HSPG-BD region of apoE to associate with SDC4 and

thereby infect hepatoma cells. We further determine using

multiple lines of evidence that while HCV uses SDC1 to a limited

extent, SDC4 is the primary HSPG used for HCV entry. We have

further developed a trans-complementation system to investigate

the critical nature of apoE in HCV infection. We have discovered

with this system the arresting result that apoE modulation has little

effect on the secretion of viral structural proteins, but dramatically

correlates with HCV infectivity. A possible explanation for the lack

of correlation between the viral protein levels produced and

infectivity might be that some non-infectious viral proteins are

secreted in exosomes [29]. Our observations are consistent with

previous findings that HCV core protein does not correlate with

infectivity in buoyant density gradients [4], and that non-infectious

HCV can be produced from Huh7 derived cell lines [30].

Strikingly, the infectivity never reached a plateau at the highest

apoE expression levels, indicating that apoE is a limiting factor for

HCV particle production in the state-of-the-art Huh 7.5.1 cell

Syndecan-Apolipoprotein E Interactions Mediate Hepatitis C Virus Entry
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Figure 2. ApoE HSPG-BD is required for HCVcc infectivity. (A–D) Huh 7.5.1 cells were co-electroporated with luciferase-encoding HCV RNA
(Luc-Jc1) and siRNA targeting endogenous apoE expression. 24 h post-transfection, cells were transduced with adenoviruses expressing either GFP
(Ad-CTRL) as a control, apoE-wt (Ad-apoE-wt), or apoE-mutants (Ad-apoEDHSPG-BD, Ad-apoE K143A K146A, and Ad-apoE R142A R145A). 3d post-
transduction, culture media from cells was harvested and components were concentrated by ultrafiltration and sucrose cushion. (A) HCV replication
in transfected and transduced cells was monitored by measuring luciferase activity. (B) Comparable wt or mutated-apoE intracellular expression in
adenoviral transduced HCV replicating cells was confirmed by Western blot with lanes corresponding to those of Fig. 2A. (C) Concentrated culture
supernatants were tested for HCV glycoprotein E2 and apoE by Western blot, representative of three independent experiments. (D) Infectivity of
HCVcc generated from transduced cells was monitored by exposure of naı̈ve Huh 7.5.1 cells to cell culture supernatants, and assaying luciferase
activity 3d post-infection. HCVcc infection is expressed as percentage relative to wt apoE trans-complemented cells. Results are expressed as
mean6SD of the experiment performed in triplicate (* = P,0.005). Lanes correspond to those of Fig. 2C. (E) Synthesized peptide corresponding to
apoE HSPG-BD (apoE-dp) (20 mg/mL), heparin (20 mg/mL) or a control peptide (CTRL peptide) were pre-incubated for 1 h with Luc-Jc1 HCVcc prior to
addition to the cells for 1 h at 37uC. Cells were washed three times with PBS and media was replaced. Infectivity was assayed by luciferase activity of
cell lysates 2d post-infection HCVcc attachment is expressed as a percentage relative to mock-treated control. (F) Serial increasing concentrations of
apoE-dp were pre-incubated for 1 h with Luc-Jc1 HCVcc (MOI = 1) prior to 1 h incubation with Huh 7.5.1 cells at 4uC to allow attachment.
Subsequently, cells were washed three times with PBS and media was replaced. Infectivity was assayed by luciferase activity of cell lysates 2 days
post-infection. HCVcc attachment is expressed as a percentage relative to mock-treated control. Results are expressed as mean6SD of three
independent experiments performed in triplicate. (* = p,0.005).
doi:10.1371/journal.pone.0095550.g002
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system. This result is consistent with findings by Long et al. that

showed apoE expression renders mouse hepatoma cells capable of

infectious HCV production, while noninfectious HCV RNA and

core protein is secreted without apoE [31]. Our results here clearly

identify the dose-dependent nature of apoE expression and HCV

infectivity. HCV appears to have evolved using this liver host

Figure 3. Syndecan 4 is involved in HCV infection. (A) Huh 7.5.1 cells were transfected with oligonucleotides to knockdown expression of SDC1
(siSDC1), SDC4 (siSDC4), CD81 (siCD81) or a siRNA control (siCTRL). Three days post-transfection, the transfected-cells were analyzed for SDC1 (black
bars) and SDC4 (gray bars) mRNA expression. (B) HCVcc infection was quantified in syndecan-modulated cells by assaying HCV RNA levels by qRT-PCR
3d after exposing cells to Jc1 HCVcc for 4 h at 37uC (MOI = 1) followed by three washes and replacement of media (* = P,0.01, ** = P,0.001). (C) Huh
7.5.1 cells were transfected with oligonucleotides to knockdown expression of SDC1, SDC4 using a smartpool containing 4 siRNA (siSDC4), SDC4
using siRNA aliquoted individually from siSDC4 (siSDC4-1 to siSDC4-4), CD81 (siCD81) or a siRNA control (siCTRL). Three days post-transfection,
transfected cells were infected with Luc-Jc1 HCVcc for 4 h at 37uC. Three days post-infection, infectivity was measured by luciferase reporter activity.
HCVcc infection is expressed as a percentage relative to siCTRL-silenced cells (* = P,0.01, ** = P,0.001). (D) Huh 7.5.1 cells were transfected with
oligonucleotides to knockdown expression of SDC4 (siSDC4) or a siRNA control (siCTRL). 24 h post-transfection, cells were transduced with
adenoviruses expressing either GFP (Ad-CTRL) as a control, Ad-HA-SDC4-wt or Ad-HA-SDC4-Y180L. Three days post-transduction, transfected and
transduced cells were infected with Luc-Jc1 HCVcc for 4 h at 37uC. Three days post-infection, infectivity was measured by luciferase reporter activity.
HCVcc infection is expressed as a percentage relative to siCTRL-silenced cells transduced with Ad-CTRL (* = P,0.01). (E) HCV pseudoparticle (HCVpp)
entry was analyzed by exposure of naı̈ve Huh 7.5.1 cells to sucrose-cushion purified HCVpp (J6) at a MOI of 1 for 4 h at 37uC. Two days after, HCVpp
entry was quantified by measuring luciferase activity. Bars represent means6SD of three independent experiments performed in triplicate, of percent
change relative to siCTRL. (F) Very-low density lipoprotein (VLDL) at concentrations of 0.5, 5, and 50 mg/mL or PBS as a control were co-incubated
with Luc-Jc1 HCVcc (MOI = 1) with naı̈ve Huh 7.5.1 cells for 2 h at 4uC. Following incubation, cells were washed three times with PBS and viral RNA
attachment was assessed by qRT-PCR. Bars represent means6SD of three independent experiments performed in triplicate. (* = P,0.01, ** = P,
0.001).
doi:10.1371/journal.pone.0095550.g003
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factor to target hepatocytes. In fact, more than 90% of circulating

apoE is hepatically derived [32].

Utilizing apoE trans-complementation we probed the HSPG-

BD of apoE and revealed that elements within this domain are

necessary to mediate HCV infection. Deletion of the entire

domain or mutation of positively charged residues to alanine

resulted in terminating HCV infectivity. The positive charge

between each of these residues (R142, K143, R145, and K146)

interacts directly with the negatively charged N- and O-sulfo

groups of glucosamine sulfate monosaccharides linked to HSPG

[33]. This electrostatic interaction may act as an early attachment

step to capture HCV on hepatocyte surface, similar to hepatic

clearance of lipoproteins [34]. Our results are consistent with

previous findings that mutation to alanine of four residues

including K143, R145, and K146 diminished infection [10], and

expand upon them to show that mutation of only two residues is

sufficient to block infection. We further excluded the possibility of

the mutations playing a passive role in inhibition of infection, since

a peptide consisting of a duplicate of a nine residue sequence from

the HSPG-BD successfully out-competed HCV binding and

infection. This finding is consistent with previous studies that

showed the entire receptor binding region of apoE could inhibit

HCV attachment to cells, and it further reveals that a shorter

sequence of the HSPG-BD is effective at blocking entry [10].

Since it was clear that the HSPG-BD of apoE was critical for

HCV infection, we examined liver-expressed HSPGs for their

contribution in mediating infection. Silencing of either SDC1 or

SDC4 prior to HCV challenge showed that while knockdown of

SDC1 modestly but significantly diminished infection, SDC4

knockdown markedly inhibited infection. Moreover, SDC4-

silenced cells transduced with Ad-HA-SDC4-wt or Ad-HA-

SDC4-Y180L allowed restoration of viral entry. SDC4 is

competent for entry of HCVcc consistent with entry being

mediated by apoE, and not through direct binding of the HSPG

to HCV glycoprotein E2 [35]. HCVpp lacking apoE showed

limited nonspecific interaction with SDC4 emphasizing the role of

apoE in HCV attachement. Previous studies have shown that

HCVpp lack lipoprotein and apoE associations and are produced

in multivesicular bodies [27]; in contrast, HCVcc are dependent

upon VLDL components for assembly and release [36]. Indeed,

the apoE-derived peptide presented in this study was ineffective at

blocking HCVpp infection, consistent with HCVpp infection

being independent of apoE association (data not shown).

During the preparation of this manuscript, Shi et al. [37]

reported that knockdown of SDC1 inhibits infection with high

concentrations of a selected variant. While we observe a limited

role of SDC1, our findings clearly indicate through multiple lines

of evidence that SDC4 is the primary HSPG involved in HCV

infection. Knockdown of SDC4 by Shi et al. [37] did not seem to

alter attachment to Huh-7.5 cells, but the authors did not

investigate if the knockdown modulated infection. We have

observed a putative compensatory mechanism whereby knock-

down of SDC1 results in activation of SDC4 expression and vice

versa. It is possible that Shi et al. [37] prematurely excluded this

compensatory mechanism and the role of SDC4. Their results

pointing to the role of SDC1 is in agreement with our

observations, however whereas we observe a modest modulation

of HCV infection, they observe a robust difference. Possible

explanations of this apparent discrepancy may be explained by

their use of a high MOI of 10, which may overestimate the role of

SDC1.

HCV utilizes aspects of lipoprotein metabolism for propagation,

production, and infection. HCV circulates as hybrid complexes

with host lipoprotein components. However, HCV also diverges

from lipoprotein remnant clearance pathways by using multiple

factors including occludin, claudin 1, and CD81 in complex

orchestration to mediate entry. The use of SDC4 for apoE

mediated HCV entry appears to be one of the first steps that

distinguishes HCV infection from lipoprotein remnant clearance,

which favors SDC1. This difference between HCV infection and

lipoprotein remnant clearance has recently been highlighted by

Albecka et al., [12] who showed that LDLR acts more on HCV

RNA replication than viral entry. However, soluble LDLR

inhibited infection, possibly by competing with HCV-SDC4

binding, since the LDLR binding domain of apoE overlaps the

HSPG-BD.

We and others have shown that apoE-specific synthetic peptides

are capable of blocking HCV entry [10,38]. Synthetic anti-

lipopolysaccharide peptides that bind to cell surface HSPGs can

inhibit infection by a variety of enveloped viruses [39]. Inhibiting

apoE-SDC4 interactions represents a novel preventive and

therapeutic antiviral strategy that could complement standard-of-

care therapies. Indeed, apoE mimetic peptides have already been

found to inhibit both viral and bacterial infections. (i.e. herpes

simplex type 1 and 2, human immunodeficiency virus, Pseudomonas

aeruginosa, Staphylococcus aureus) [40,41]. Inhibition of apoE-SDC4

interactions by using antibodies, peptides, or small molecules could

represent a novel strategy in difficult-to-treat patients and prevent

infection post liver graft infection, a procedure without preventive

strategies and unsatisfactory treatment options [42,43].
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