156 research outputs found

    Measurement and Modeling of Infrared Nonlinear Absorption Coefficients and Laser-induced Damage Thresholds in Ge and GaSb

    Get PDF
    Using a simultaneous fitting technique to extract nonlinear absorption coefficients from data at two pulse widths, we measure two-photon and free-carrier absorption coefficients for Ge and GaSb at 2.05 and 2.5 μm for the first time, to our knowledge. Results agreed well with published theory. Single-shot damage thresholds were also measured at 2.5 μm and agreed well with modeled thresholds using experimentally determined parameters including nonlinear absorption coefficients and temperature dependent linear absorption. The damage threshold for a single-layer Al2O3 anti-reflective coating on Ge was 55% or 35% lower than the uncoated threshold for picosecond or nanosecond pulses, respectively

    The Staphylococcus aureus RNome and Its Commitment to Virulence

    Get PDF
    Staphylococcus aureus is a major human pathogen causing a wide spectrum of nosocomial and community-associated infections with high morbidity and mortality. S. aureus generates a large number of virulence factors whose timing and expression levels are precisely tuned by regulatory proteins and RNAs. The aptitude of bacteria to use RNAs to rapidly modify gene expression, including virulence factors in response to stress or environmental changes, and to survive in a host is an evolving concept. Here, we focus on the recently inventoried S. aureus regulatory RNAs, with emphasis on those with identified functions, two of which are directly involved in pathogenicity

    Vegetation Type Dominates the Spatial Variability in CH<inf>4</inf> Emissions Across Multiple Arctic Tundra Landscapes

    Get PDF
    Methane (CH4) emissions from Arctic tundra are an important feedback to global climate. Currently, modelling and predicting CH4 fluxes at broader scales are limited by the challenge of upscaling plot-scale measurements in spatially heterogeneous landscapes, and by uncertainties regarding key controls of CH4 emissions. In this study, CH4 and CO2 fluxes were measured together with a range of environmental variables and detailed vegetation analysis at four sites spanning 300 km latitude from Barrow to Ivotuk (Alaska). We used multiple regression modelling to identify drivers of CH4 flux, and to examine relationships between gross primary productivity (GPP), dissolved organic carbon (DOC) and CH4 fluxes. We found that a highly simplified vegetation classification consisting of just three vegetation types (wet sedge, tussock sedge and other) explained 54% of the variation in CH4 fluxes across the entire transect, performing almost as well as a more complex model including water table, sedge height and soil moisture (explaining 58% of the variation in CH4 fluxes). Substantial CH4 emissions were recorded from tussock sedges in locations even when the water table was lower than 40 cm below the surface, demonstrating the importance of plant-mediated transport. We also found no relationship between instantaneous GPP and CH4 fluxes, suggesting that models should be cautious in assuming a direct relationship between primary production and CH4 emissions. Our findings demonstrate the importance of vegetation as an integrator of processes controlling CH4 emissions in Arctic ecosystems, and provide a simplified framework for upscaling plot scale CH4 flux measurements from Arctic ecosystems

    Staphylococcus aureus RNAIII Binds to Two Distant Regions of coa mRNA to Arrest Translation and Promote mRNA Degradation

    Get PDF
    Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation

    The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests

    Get PDF
    Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database (PROFOUND DB) provides a wide range of empirical data on European forests to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale. A particular advantage of this database is its wide coverage of multiple data sources at different hierarchical and temporal scales, together with environmental driving data as well as the latest climate scenarios. Specifically, the PROFOUND DB provides general site descriptions, soil, climate, CO2, nitrogen deposition, tree and forest stand level, and remote sensing data for nine contrasting forest stands distributed across Europe. Moreover, for a subset of five sites, time series of carbon fluxes, atmospheric heat conduction and soil water are also available. The climate and nitrogen deposition data contain several datasets for the historic period and a wide range of future climate change scenarios following the Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5). We also provide pre-industrial climate simulations that allow for model runs aimed at disentangling the contribution of climate change to observed forest productivity changes. The PROFOUND DB is available freely as a "SQLite" relational database or "ASCII" flat file version (at https://doi.org/10.5880/PIK.2020.006/; Reyer et al., 2020). The data policies of the individual contributing datasets are provided in the metadata of each data file. The PROFOUND DB can also be accessed via the ProfoundData R package (https://CRAN.R- project.org/package=ProfoundData; Silveyra Gonzalez et al., 2020), which provides basic functions to explore, plot and extract the data for model set-up, calibration and evaluation.Peer reviewe

    Natural environments, ancestral diets, and microbial ecology: is there a modern “paleo-deficit disorder”? Part I

    Get PDF

    Widespread divergence of the CEACAM/PSG genes in vertebrates and humans suggests sensitivity to selection

    Get PDF
    In mammals, carcinoembryonic antigen cell adhesion molecules (CEACAMs) and pregnancy-specific glycoproteins (PSGs) play important roles in the regulation of pathogen transmission, tumorigenesis, insulin signaling turnover, and fetal–maternal interactions. However, how these genes evolved and to what extent they diverged in humans remain to be investigated specifically. Based on syntenic mapping of chordate genomes, we reveal that diverging homologs with a prototypic CEACAM architecture–including an extracellular domain with immunoglobulin variable and constant domain-like regions, and an intracellular domain containing ITAM motif–are present from cartilaginous fish to humans, but are absent in sea lamprey, cephalochordate or urochordate. Interestingly, the CEACAM/PSG gene inventory underwent radical divergence in various vertebrate lineages: from zero in avian species to dozens in therian mammals. In addition, analyses of genetic variations in human populations showed the presence of various types of copy number variations (CNVs) at the CEACAM/PSG locus. These copy number polymorphisms have 3–80% frequency in select populations, and encompass single to more than six PSG genes. Furthermore, we found that CEACAM/PSG genes contain a significantly higher density of nonsynonymous single nucleotide polymorphism (SNP) compared to the chromosome average, and many CEACAM/PSG SNPs exhibit high population differentiation. Taken together, our study suggested that CEACAM/PSG genes have had a more dynamic evolutionary history in vertebrates than previously thought. Given that CEACAM/PSGs play important roles in maternal–fetal interaction and pathogen recognition, these data have laid the groundwork for future analysis of adaptive CEACAM/PSG genotype-phenotypic relationships in normal and complicated pregnancies as well as other etiologies.Chia Lin Chang, Jenia Semyonov, Po Jen Cheng, Shang Yu Huang, Jae Il Park, Huai-Jen Tsai, Cheng-Yung Lin, Frank Grützner, Yung Kuei Soong, James J. Cai, Sheau Yu Teddy Hs
    • …
    corecore