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Using a simultaneous fitting technique to extract nonlinear absorption coefficients from data at two pulse
widths, we measure two-photon and free-carrier absorption coefficients for Ge and GaSb at 2.05 and 2.5 �m for
the first time, to our knowledge. Results agreed well with published theory. Single-shot damage thresholds
were also measured at 2.5 �m and agreed well with modeled thresholds using experimentally determined pa-
rameters including nonlinear absorption coefficients and temperature dependent linear absorption. The dam-
age threshold for a single-layer Al2O3 anti-reflective coating on Ge was 55% or 35% lower than the uncoated
threshold for picosecond or nanosecond pulses, respectively.

OCIS codes: 190.0190, 140.3330, 350.1820.

1. INTRODUCTION
Since the invention of the laser 50 years ago [1], incre-
mentally shorter pulses and higher 2–3 �m middle-
infrared (mid-IR) pulse energies have been demonstrated
[2], resulting in high peak irradiances that can cause sig-
nificant changes in optical materials. As is well known
and also demonstrated here, the nonlinear absorption
(NLA) of a material can change from less than 5% to
greater than 90% based solely on the level of incident ir-
radiance. The absorbed energy can lead to a rise of tem-
perature above the melting point, which is why the sub-
jects of NLA and damage are intertwined. As higher peak
power mid-IR laser sources are developed, it will be cru-
cial to measure the NLA of transmissive mid-IR materi-
als.

There were three specific objectives in this research in-
volving mid-IR laser effects. The first was to measure the
NLA coefficients of Ge and GaSb at 2.05 and 2.5 �m.
These materials can be used in mid-IR sensors and were
also selected to study the difference in NLA and laser-
induced damage between direct bandgap (GaSb) and indi-
rect bandgap (Ge) semiconductors. The second objective
was to model the dynamics of NLA that lead to surface
temperature rise and eventually thermal damage from a
single laser pulse, including temperature dependent lin-
ear absorption ��T� and carrier density dependent recom-
bination �R�N�. The final objective was to test the laser-
induced damage threshold (LIDT) due to these effects and
to compare with modeling.

2. THEORY
Two-photon absorption (TPA) was first proposed in 1931
by Nobel laureate Maria Göppert-Mayer [3]. However,

TPA could not be confirmed in the optical frequency range
until the demonstration of the laser. In 1961, TPA was
first observed in CaF2:Eu2+ crystals at a wavelength of
694 nm by Kaiser and Garrett [4].

Degenerate TPA was studied in this work, where two
photons of equal energy are absorbed to create one
electron-hole pair, but it is also possible to study non-
degenerate TPA using two beams of differing frequencies.
The atomic-level effects that contribute to TPA and its po-
larization response are described in [5,6]. The TPA coeffi-
cient � can be predicted from the bandgap Eg, photon en-
ergy Ep, Kane parameter K, and refractive index n using
Van Stryland’s empirical simplification to Wherrett’s scal-
ing law, which is presented in Eq. (1) [7,8]. For an indirect
bandgap material such as Ge, predictions of � use the
bandgap at the � point, as � is 2000 times smaller at the
indirect gap, and therefore the interaction at the indirect
gap can be ignored [9]:

���� = K
�Ep

n2���Eg
3F2�h�

Eg
�, where F2�x� =

�2x − 1�1.5

�2x�5 ,

x =
h�

Eg
. �1�

Free-carrier absorption (FCA) is an optical transition
where a photon is absorbed by an excited carrier (electron
or hole) and is measured by the FCA cross section �. � de-
pends on wavelength and is related to the free-carrier
density N by the expression �FCA=�N, where �FCA de-
notes linear absorption due to free carriers. This absorp-
tion can occur from intrinsic or excited carriers that in-
clude free electrons in the conduction band and free holes
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in the valence band. This is a cumulative nonlinearity as
there is a lifetime associated with the carriers. The free
carriers will continue to absorb until they recombine,
which occurs at a rate that is both material dependent
and free-carrier density dependent. A full band-structure
study indicates that the variation of FCA with wave-
length is not strictly monotonically increasing [10].

The optically and thermally excited carriers generated
by linear absorption and NLA induce many processes that
affect the level of absorption, heat rise �T�, and generated
free-carrier density �N� in a material and causes radiation
to propagate according to Eqs. (2)–(5) [11]. Experimen-
tally measured temperature dependent linear absorption
��T� is presented later in Fig. 2 and results in greater ac-
curacy by coupling Eq. (4) into Eqs. (2) and (3). Addition-
ally, the inclusion of free-carrier density dependent re-
combination �R�N� in Eq. (5) was required as N varied
over 6 orders of magnitude during damage threshold
modeling:

dI

dz
= − ��T�I − �I2 − ��N0 + N�I, �2�

dN

dt
=

��T�I

h�
+

�I2

2h�
−

N

�r�N�
, �3�

dT

dt
=

��T�I

	C
+

�I2

	C
+

��N0 + N�I

	C
, �4�

1

�R
= BradiativeN�r,z,t� + CaugerN�r,z,t�2. �5�

In Eqs. (2)–(5), I, �, N0, �R, 	, and C are irradiance,
FCA coefficient, intrinsic free-carrier density, free-carrier
recombination time, material density, and specific heat,
respectively. r, z, and t denote variation in sample radial
position, sample length, and time.

Previously published results of NLA near 2.05 and
2.5 �m wavelengths in Ge are shown in Table 1. The
nearest literature wavelengths for Ge are 2.36 and
2.6 �m, but those studies did not account for FCA. The
next closest study occurred at 2.8 �m, where Eq. (1) pre-
dicts that TPA is reduced by 60% when compared with a
wavelength of 2.5 �m.

GaSb is far less studied, and there is only one paper in
which TPA was measured. In a 1996 work, Akmanov
et al. used an estimated �=2
10−17 cm2 to measure

�=380 cm/GW in GaSb at a wavelength of 2.94 �m [16].
At a wavelength of 2.05 �m, a � of 156 cm/GW was re-
ported as a theoretical calculation for GaSb [17].

A. Laser-Induced Damage Study
The LIDT of a material is influenced by many simulta-
neous wavelength-dependent processes that operate on
widely varying time scales. For picosecond and longer
pulses, the LIDT can vary with linear absorption, NLA,
and several material properties including heat capacity,
thermal conductivity, and carrier recombination rates.
The processes that affect damage at femtosecond time
scales are very different, transitioning from thermal
mechanisms to dielectric breakdown as the extreme peak
irradiance resulting from the ultrashort pulse duration
can cause the energy to be deposited faster than free car-
riers can relax into phonons [18]. The literature was re-
viewed for prior work, and while there were no damage
studies performed on GaSb, two Ge studies are reported
in Table 2.

The 0.25 �m study occurs in the linear absorption re-
gime, and the 2.8 �m test is the only study where TPA is
the dominant damage mechanism [20]. The longer wave-
lengths in the 2008 study rely on three-photon absorption
(3PA) and four-photon absorption and lead to dielectric
breakdown. Additionally, the 2.8–5.2 �m tests were con-
ducted on a multiple pulse free-electron laser, not a single
shot test as performed in this work.

An implicit finite difference (FD) numerical method
was used to solve Eqs. (2)–(5) and was used both to ex-
tract NLA coefficients and to model temperature rise re-
sulting in laser-induced damage. The pulse and sample
were broken up into elements in time, sample radius, and
sample length, using the following assumptions:

• The incident beam has radial symmetry and con-
tains quasi-monochromatic light.

• The sample is thin compared to the beam confocal
parameter, resulting in negligible diffraction while tra-
versing the sample, and nonlinear refraction is insignifi-
cant.

• The slowly varying envelope and paraxial approxi-
mations can be applied.

• Three-photon (and higher) absorption and tunneling
ionization are insignificant.

• The temperature dependences of �, �, and �R are in-
significant.

Table 1. Survey of Nonlinear Studies for Germanium, Ordered by Wavelengtha

�

��m� Pulse Width
TPA ���
(cm/GW)

FCA ���
�cm2�

Dopant Level
�cm−3� Reference

2.36 † 1000 — † [12]
2.6–3.1 100 ns 2500 — † [13]

2.65 480 ns 680 — n�1015–1016 [14]
2.80 480 ns 325 — n�1015–1016 [14]
2.90 2 ps 80±10 6±1
10−17� † [15]
2.95 480 ns 100 — n�1015–1016 [14]
3.00 2 ps 20±5 6±1
10−17� † [15]

a† =not given, —=not measured, �=non-degenerate value measured using a 2.9 �m pump and a 3 �m probe.
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• The spot radius ro and pulse repetition frequency
(PRF) are chosen to avoid free-carrier diffusion and ther-
mal diffusion.

An advantage of breaking the pulse into elements is
that a non-Gaussian temporal profile can be imple-
mented, which allows the accurate modeling of nonlinear
coefficients even if the input pulse has a unusual time
profile, which is typical of gain-switched lasers [21,22].
When appropriate, the FD model either used a Gaussian
profile or was modified to accept the measured temporal
profile from a gain-switched Cr2+:ZnSe nanosecond laser.
The repeatable temporal profile from this source is shown
in Fig. 1 (jagged trace), and an equivalent Gaussian pulse
was fit to the gain-switched pulse, resulting in an admit-
tedly poor best fit of 68 ns �p.

It is clear that the peak irradiance of the gain-switched
pulse is much greater than an equivalent Gaussian. Mod-
eling indicated that if a 5 mJ pulse were incident on a
265 �m spot radius, the resulting temperature rise from
this gain-switched profile would melt the surface of a Ge
sample while an equivalent Gaussian pulse would leave
the surface undamaged. The energy in a non-Gaussian
pulse can be expressed as E=Areaspot�Idt or alternatively
E=Areaspot��Ii���, where � is the oscilloscope time step of
0.2 ns. The irradiance profile Ii in Fig. 1 was determined
by multiplying the oscilloscope voltage trace Vi from a
1.5 mJ pulse by a constant M, and varying M until
1.5 mJ=Areaspot��ViM*��. Using this method and a
265 �m spot radius at 1/e irradiance, the peak irradiance
was calculated as 22.3 MW/cm2.

3. SEMICONDUCTOR CHARACTERIZATION
In order to measure NLA coefficients and model damage
thresholds, accurate knowledge of the optical, electrical,

and thermal properties of a material is required. For Ge
and GaSb, these properties are presented in Table 3 from
either measurement or the literature. Two second-order
effects that influence NLA and damage are modeled,
which are variation of linear absorption with temperature
and variation of free-carrier recombination time with
free-carrier density. The effectiveness of an anti-reflective
coating is also reported.

Temperature dependent absorption: In order to in-
crease the accuracy of damage modeling, temperature de-
pendent Fourier transform infrared spectra for Ge and
GaSb were obtained [23]. The goal of this effort was to
capture the increase in linear absorption ��� that occurs
due to lattice expansion and increased phonon density
from thermally excited carriers. As shown by the black
traces in Fig. 2, linear absorption at 2.5 �m increases
dramatically at temperatures above 350 K (450 K) for Ge
(GaSb). The red traces represent ��T� for both materials
that resulted from the experiment.

The material bandgap Eg also changes with tempera-
ture [23], which will modify the NLA by altering � as
shown in Eq. (1). However, Eg�T� and the resulting ��T�
are not implemented in the FD model as the resulting ��
was calculated to be less than the error bars on the final
measurements. If the band edge approaches the photon
energy due to the bandgap shift, the ��T� measurement
would capture any increase in linear absorption from this
effect.

Free-carrier density dependent recombination: FCA
will decrease if a significant number of free carriers re-
combine during a pulse. Since free carriers relax at a rate
that depends on the free-carrier density N, this effect was
studied as it can significantly affect FCA, transmission,
and temperature rise leading to damage. Auger recombi-
nation, radiative recombination, and Shockley–Read–
Hall (SRH) recombination all contribute; however SRH
was ignored as its microsecond lifetimes far exceed the
picosecond/nanosecond �p in this work [24,25].
N-dependent recombination lifetimes �R�N� are included
in the FD model and were calculated for the peak N in the
NLA tests. When the recombination rates in Table 3 are
used to calculate �R from Eq. (5), an important difference
between indirect and direct bandgap materials is high-
lighted. For an equivalent N, radiative recombination is
suppressed in Ge as it must be phonon assisted, and re-
sulted in �R�N� of 250–500 ns during the NLA testing.
This was several times longer than the 37–68 ns pulses in

Fig. 1. (Color online) Gain-switched temporal profile (solid
trace) with Gaussian best fit overlay (dotted trace).

Table 2. Survey of Damage Studies for Germanium, Ordered By Wavelength

�

��m� Pulse Width
LIDT

�J/cm2�
Dopant Level

�cm−3�
Beam Spot Radius

��m� Reference

0.25 38 ns 0.33 p=1017 1500 [19]
2.8 5 �s FELa 5.3 n=1013–1014 260–380 [20]
3.2 5 �s FELa 12.8 n=1013–1014 260–380 [20]
3.6 5 �s FELa 21.5 n=1013–1014 260–380 [20]
4.0 5 �s FELa 22.5 n=1013–1014 260–380 [20]
4.4 5 �s FELa 26.0 n=1013–1014 260–380 [20]
4.8 5 �s FELa 24.8 n=1013–1014 260–380 [20]
5.2 5 �s FELa 22.8 n=1013–1014 260–380 [20]

aFree-electron laser—30 Hz, 5 �s length macropulse consisting of 10,000 1 ps micropulses.

2124 J. Opt. Soc. Am. B/Vol. 27, No. 10 /October 2010 Wagner et al.

NE 

" ~ 
;;;. 

25 

20 

15 

10 

Gaussian is 68.0 ns at half width, 1/e intensity 
energy in Gaussian and gain-switched pulses = 1.50 mJ 

I --- actual pulse ( 
I ... .. ... .. Gaussian I 

5 ~ ......................... ; ................... ··,_J.i, .~f .... \;:,/;t,' A,_."'"--"·· .. , cc ···· ·;· .......................... ;........... ........ -I 
..... 

0 
-150 -100 -50 0 

time (ns) 
50 100 150 



these experiments, and �R did not reduce NLA in Ge.
However, the GaSb �R�N� of 45–65 ns was on the order of
the pulse width, which reduced the NLA and increased
the LIDT as carrier recombination occurred during the
pulse.

The high refractive indices of Ge and GaSb result in
significant Fresnel reflections at each surface, which
would cause strong internal reflections that could distort
the NLA measurements. The transmission was increased
to 80%–90% by applying a single layer 360 nm aluminum
oxide �Al2O3� anti-reflective coating to a portion of each
sample.

Surface inspections before testing were performed on
an atomic force microscope (Veeco, NanoScope V). The re-
sults from this measurement are presented in Table 3 and
show that GaSb has slightly lower surface roughness.
Table 3 also lists Ge and GaSb optical, electrical, and
thermal properties used in this work.

4. PROCESSES IMPACTING NLA
MEASUREMENTS
There are several factors that contribute to nonlinear ab-
sorption and damage, and accurate measurement of non-
linear coefficients requires careful test design to avoid ef-
fects that cannot easily be modeled.

Thermal diffusion: Heat generated by the incident
pulse can alter the level of linear absorption as shown in
Fig. 2. Test results could be distorted if heat escapes dur-
ing the pulse width or if residual heat builds up in the
spot area over repeated pulses. To avoid these effects, test
constraints for spot size and maximum laser PRF are cal-
culated. The distance that heat will diffuse within the
time of the laser pulse is the definition of the thermal dif-
fusion length L [31]. For a 70 ns pulse width, the thermal
diffusion length for Ge and GaSb is less than 4 �m and
will not affect the experiments in this work, but may need
to be taken into account for microsecond and longer
pulses.

If testing is accomplished using a train of pulses, ther-
mal diffusion dictates a maximum PRF that will allow
heat to dissipate out of the spot area in between pulses.
This PRF is calculated using the expression �d=ro

2 /4D
with a spot radius ro, diffusivity D, and diffusion time �d
[32]. The maximum PRF is calculated as a repetition rate
whose period is ten times �d so that any heat generated
can escape the area in between pulses. A 700 �m spot ra-
dius would require a maximum PRF of 29 or 19 Hz for Ge
and GaSb, respectively.

Free-carrier diffusion: In addition to recombining, free
carriers generated by the incident pulse can diffuse out of
the spot area, which would reduce FCA and therefore al-
ter the NLA. Using the same method as thermal diffu-
sion, a free-carrier diffusion length can be calculated us-
ing a Ge value of D=44 cm2/s, and D=77 cm2/s for GaSb
[27,28]. Free-carrier diffusion is much faster than ther-
mal diffusion, but will still be insignificant for picosecond
pulses. However, for a 70 ns pulse width, free-carrier dif-
fusion lengths of 35 and 46 �m were calculated for Ge and
GaSb, respectively. Care was taken to choose spot sizes
larger than the free-carrier diffusion length in the nano-
second experiments.

Intrinsic free carrier absorption: Modeling indicated

Table 3. Material Properties for Ge and GaSb Samples

Property Ge Ref.a GaSb Ref.a

Thickness (mm) 3.05 M 1.06 M
Index of refraction at 2.5 �m 4.06 [26] 3.749 [26]
Fresnel loss per surface (%) 37 C 34 C
Bandgap at the � point (eV) 0.800 [26] 0.726 [26]
Surface roughness Ra parameter (nm) 1.73 M 1.46 M
Surface roughness Rq parameter (nm) 2.21 M 1.87 M
Melting temperature �°K� 1210 [26] 985 [26]
Thermal conductivity (W/cm K) 0.58 [26] 0.32 [26]
Density �g/cm3� 5.32 [26] 5.61 [26]
Specific heat �J g−1 K−1� 0.31 [26] 0.25 [26]
Thermal diffusivity �cm2/s� 0.352 [26] 0.228 [26]
Free-carrier diffusivity �cm2/s� 44 [27] 77 [28]
Resistivity � cm� 1865 M 2717 M
Intrinsic free-carrier density �cm−3� �1013 C �1012 C
Electron mobility �n �cm2/V s� 3900 [26] 3000 [26]
Hole mobility �p �cm2/V s� 1900 [26] 1000 [26]
Ionizing potential (eV) 7.9 [29] 5.03 [30]
Radiative recombination rate �cm3/s� 6.4
10−14 [26] 1.2
10−9 M
Auger recombination rate �cm6/s� 1
10−30 [26] 5
10−30 [17]

aLegend: M=measured, C=calculated.

Fig. 2. (Color online) 2.5 �m variation of linear transmission
(left axis) and � (right axis) with temperature.
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that N0 could influence absorption if the sample is heavily
doped, and N0 was measured using a resistivity method
to rule out this effect. The high resistivities of 1900 or
2700  cm for Ge and GaSb, respectively, indicate that
the samples are of high purity with a calculated level of
intrinsic carrier density between 1012 and 1013 cm−3. N0
was not used in the FD model as levels �1015 cm−3 were
insignificant compared to the carrier density generated by
the pulse and had no impact on the results.

Nonlinear refraction: Refraction can be induced in a
material from nonlinear refraction, thermal lensing, or
free-carrier refraction, based on instantaneous, thermal,
or cumulative effects, respectively. There are two ways
that nonlinear refraction could affect the nonlinear mea-
surements. The first is that induced refraction could
cause the beam to be defocused to the point that some of
the pulse energy misses the detector, resulting in an in-
accurate energy measurement. This potential problem
was alleviated by placing the energy head close to the
sample exit surface in order to collect all transmitted en-
ergy.

The second issue is that nonlinear refraction could fo-
cus or defocus the beam within the sample, varying the
irradiance and therefore the level of NLA. Refraction
would have the greatest effect on the Ge sample as its
thickness was three times greater than the GaSb sample,
and its value of dn /dT is ten times greater. In order to
rule out refractive effects, modeling was performed on the
Ge NLA data collected in this work at a wavelength of
2.05 �m using a numerical model that incorporated dif-
fraction effects [33]. Nominal values of Ge nonlinear re-
fraction n2=7
10−13 cm2/W, thermo-optic coefficient
dn /dT=400
10−6 K−1, and free-carrier refraction cross
section �FCR=7
10−21 cm3 resulted in less than 0.1%
transmission change, due to thin samples and less than
4 K temperature rise during testing.

Three-photon absorption: Although the bandgaps of Ge
and GaSb would permit 3PA at wavelengths of 2.05 and
2.5 �m, it was assumed to be negligible at the irradiances
used in this study as there is a significantly lower prob-
ability associated with 3PA in a regime where TPA is pos-
sible [34].

5. EXPERIMENT AND RESULTS
This section describes six experiments and their results
that measure and model nonlinear optical absorption
leading to damage in semiconductors. First, NLA coeffi-
cients are measured using an irradiance scan method
[33], and then damage thresholds that result from NLA
are measured at two pulse widths. Finally, LIDT model-
ing was performed using measured NLA coefficients,
�R�N� and ��T�, in order to compare theory to experiment
and explore the pulse width dependence of the LIDT.

The uncertainty in measured nonlinear coefficient val-
ues is proportional to I2. In order to minimize experimen-
tal uncertainty, the incident beam was carefully mea-
sured, and the apparatus was aligned and calibrated
before and after testing, referencing the irradiance scan
apparatus in Fig. 3. Attenuation to achieve a range of ir-
radiances across 2 orders of magnitude was accomplished

with a computer controlled attenuator stage (Newport,
PR50PP) and two neutral density filters that were flipped
in and out of the beam.

As discussed above, there is wide variation in reported
� values. While the majority of the variation was due to
the exclusion of FCA effects, some variation could be at-
tributed to imprecise definitions of peak pulse irradiance,
pulse width, and spot size. In this work, Gaussian spatial
profiles are verified, the spot size ro was defined as the ra-
dius at the 1/e level of irradiance, �p was defined as the
pulse half-width at 1/e irradiance, and the peak pulse ir-
radiance was derived as I0=E / ����p�ro

2�, where E is the
pulse energy. This derivation of Gaussian peak pulse ir-
radiance results when the definitions above are used and
radial symmetry is assumed. In each experiment a 10 �m
pinhole was used to measure the beam radius and verify a
Gaussian spatial profile along x and y dimensions. Tem-
poral duration was measured using an autocorrelator for
the picosecond laser source, and mid-IR fast photodetec-
tors for the nanosecond laser sources.

In experiments I and II, NLA data were collected on Ge
and GaSb at wavelengths of 2.05 and 2.5 �m using pico-
second pulses. The laser source consisted of 10 Hz mode-
locked Nd:ytrrium aluminum garnet (Ekspla, PL2143)
and difference frequency generator (Ekspla, DFG2-10P)
that produced the desired wavelengths. The beam was
spatially filtered to achieve a Gaussian spatial profile. A
non-collinear autocorrelator was used to measure the
2.5 �m pulse width as 10.1±0.83 ps, where a Gaussian
temporal profile was assumed. The same technique mea-
sured the 2.05 �m pulse width as 10.2±0.8 ps. For the
2.5 �m NLA tests, a 734 �m spot radius at 1/e irradiance
was measured, and a 584 �m spot radius was measured
for the 2.05 �m NLA tests. NLA data are presented in the
simultaneous fit section that follows the experimental de-
scriptions.

Experiment III was conducted on Ge and GaSb using a
nanosecond 2.05 �m Tm,Ho:YLF (yttrium lithium fluo-
ride) laser. This source has been described elsewhere [21];
however, the laser was designed for continuous-wave
(CW) or kilohertz Q-switched operation which was not
suitable for NLA testing. In order to satisfy the thermal
diffusion constraint on PRF, a quasi-CW pumping scheme
was implemented to give 10 Hz operation with an optimal
Q-switch delay based on the work of Louchev et al.
[35,36]. The spatial and temporal profiles were very well
approximated by Gaussians, with measured values of �p
=37 ns and ro=375 �m in x and y axes.

Experiment IV was conducted on Ge and GaSb at a
wavelength of 2.47 �m using nanosecond pulses from a
gain-switched Cr2+:ZnSe laser. The source was character-
ized to a 265 �m spot radius at focus with a near-

Fig. 3. NLA and damage testing experimental setup.
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Gaussian spatial profile, and the temporal profile was
presented in Fig. 1. The spectral content of the pulses was
measured using a monochromator (ARC, SpectraPro-
750), yielding a 2.47 �m peak emission and 110 nm line-
width. The picosecond experiment was performed using
2.50 �m pulses, so there was a slight difference in wave-
lengths. Using Eq. (1), � theoretically changes by less
than 4% across the range 2.4–2.51 �m for either Ge or
GaSb, which was acceptable as it was less than the error
bars on the final � measurements.

Simultaneous fit to NLA coefficients: A quantitative si-
multaneous fit method was performed on all NLA data in
order to extract � and �, which are difficult to separate
using other methods. This builds on the work in [37],
where � and � are measured using a self-consistent
method on dual-pulse width NLA data. In this subsection
the motivation for this method is presented, the fitting
method is described, � and � are measured for Ge and
GaSb at wavelengths of 2.05 and 2.5 �m, and an uncer-
tainty analysis is performed.

As � is a cumulative nonlinearity, conventional wisdom
has held that � can be isolated with an ultrashort pulse.
That pulse width was derived in a recent work [38], which
states that the pulse width must satisfy �p�2h��L /� to
isolate �, where L is the sample length. The 10 ps pulse
width experiments in this work do not satisfy this condi-
tion for either the Ge or GaSb sample, which would re-
quire �p�45 fs. The fact that the pulses were too long to
isolate � was evident in the simultaneous � and � fits
shown in this study.

A � measurement can vary by orders of magnitude if
FCA is not included, especially for nanosecond and longer
pulses. This was shown in a 1973 study where NLA was
observed in a 5.1 mm thick uncoated germanium [13].
The laser output covered a spectrum from 2.6–3.1 �m,
pulse width was 100 ns, and peak irradiances ranged
from 1–10 MW/cm2. FCA was not used, and � alone
was used to fit the transmission, resulting in
�=2500 cm/GW. The same transmission can be fit using
the FD model and NLA values measured from this work.
After scaling for wavelength using Eq. (1), �=30 cm/GW
and �=8
10−16 cm2 provide an excellent fit, highlighting
the need for a simultaneous � and � measurement tech-
nique.

Figure 4 (left) shows the 2.05 �m Ge nanosecond NLA
data (red circles) and picosecond NLA data (blue circles),
along with the theoretical fitting lines obtained from the

best fit pair of �=71 cm/GW and �=4.9
10−16 cm2. The
quantitative fit to both picosecond and nanosecond data is
shown in Fig. 4 (right), which plots the inverse sum of
squared error resulting from a spectrum of � and �. Re-
gions of best fit are shown in red, with a yellow star sig-
nifying the best quantitative fit, which reveals the true
values of � and �. The theoretical lines on the left chart
result from these values, showing that an excellent fit
was obtained.

Using the same approach, the dual pulse width NLA
data that were collected for 2.05 �m GaSb, 2.5 �m Ge,
and 2.5 �m GaSb were fit using either Gaussian or gain-
switched temporal profiles in the FD model, as appropri-
ate. A two step method was used to calculate the uncer-
tainty in reported � and � values. First, a propagation of
errors method was used to calculate the uncertainty in
the peak pulse irradiance that results from inaccuracies
in pulse energy, pulse width, and spot size. Using this
method, the irradiance uncertainty �I was calculated for
each of the four experiments, which ranged from 9%–15%.

The second step was to determine how �I affects � and
�. The uncertainty range was measured by scaling the
peak irradiance of the NLA data by ±�I and then refitting
using the quantitative technique described earlier. The fit
is sensitive to errors in the nanosecond and picosecond
data, yielding four combinations of errors that are tested:
�ns I and �ps I. In these four scenarios, it was noted that
there was 10%–15% variation in � and � when the nano-
second and picosecond data are scaled in the same direc-
tion; however greater variation resulted when one data
set was scaled with the opposite sign. The error range for
the coefficients presented here is not symmetric, which
was unsurprising due to the nonlinear processes involved.
The measured NLA coefficients and uncertainty ranges
are summarized in Table 4. In the table, the bounds are

Fig. 4. (Color online) Ge 2.05 �m fitting routine. The left graph presents nanosecond NLA data (circles in left trace) and picosecond data
(circles in right trace) along with FD model output using the best fit pair of � and �. This pair is determined from the right graph in
which the yellow star signifies the minimum error.

Table 4. NLA Coefficient Measurements at Two
Mid-IR Wavelengths for Ge and GaSb

Wavelength ��m�

Ge GaSb

2.05 2.4–2.51 2.05 2.4–2.51

� (cm/GW) 71 68 64 119
(lower–upper bound) (45–96) (57–95) (49–90) (86–148)
� �10−16 cm2� 4.9 9.0 3.8 6.5
(lower–upper bound) (3.0–9.4) (5.7–12.5) (2.5–5.4) (5.0–9.8)
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defined as the minimum and maximum � and � that re-
sult from refitting at �ns �I and �ps �I.

The NLA coefficients reported in Table 4 are now com-
pared to literature values and theoretical predictions. �
measurements are compared in Fig. 5, where the left
graph compares the measured Ge � with literature val-
ues, and the theory from Eq. (1) is overlaid as the green
trace. The Ge values from this work are in excellent
agreement with the prediction and are in reasonable
agreement with the only literature value that also used
FCA in their NLA fit [15], even though their � value was
an estimate.

GaSb � are compared in Fig. 5 (right), and the 2.5 �m
value is in excellent agreement with Eq. (1). The discrep-
ancy between the measured GaSb 2.05 �m value and the
Van Stryland prediction of �=111 cm/GW may be ex-
plained with a GaSb full band-structure prediction cre-
ated by SRI International that predicts a 2.05 �m � of 41
cm/GW [10]. This model is overlaid as the blue line in Fig.
5 (right) and is in better agreement with the value re-
ported in this work. It is noted that neither model pro-
vides an excellent fit to both data points; however the un-
certainty range of each model may intersect the
uncertainty range of the reported values. The 1996 study
of Akmanov et al. [16] at 2.94 �m used an estimate of
�=2
10−17 cm2 which is 1 order of magnitude smaller
than the values reported in this work (3.8
10−16 cm2 and
6.5
10−16 cm2). This results in a much higher fit to �,
which is expected due to the inverse relationship between
� and � that is visible in Fig. 4 (right). It was not possible
to fit the transmission data from the 1996 study of Ak-
manov et al. [16] using measured � values from this work
as the pulse width, level of linear transmission, spot size,
and spatial profile were not reported.

A. Laser-Induced Damage Study
The culmination of this study was the measurement and
modeling of single-pulse LIDTs in Ge and GaSb at 2.5 �m
that result from NLA, �R�N�, and ��T�. While the coatings
were applied for the nonlinear measurements, the dam-
age threshold of the coated Ge sample was measured as
an additional data point.

Picosecond damage tests: The source for experiment V
was the tunable Ekspla DFG that was also used in the
NLA testing. For this test, the pulse width was previously
measured as 10.1±0.83 ps using an autocorrelator at
2.5 �m. For the GaSb and Ge picosecond LIDT experi-
ments, 44 and 98 �m ro’s were measured, respectively,
and both possessed near-perfect Gaussian spatial profiles.
The lens had a tight focus, and the spot radius was highly
dependent on z position, and the sample was accurately
placed at the focus using an infrared focal plane array
(FPA). First, the pinhole was located at the focus using a
series of raster scans, and the pinhole was imaged on the
FPA. Then, the pinhole would be swapped with the
sample, and the sample z position would be altered until
the sample was in focus. The sample would become in or
out of focus at a �z of 100 �m (0.1 mm), allowing very ac-
curate placement. The process was aided using a solder-
ing iron as a “thermal flashlight” to bring out details on
the pinhole or sample surface on which to focus.

The damage test plan was guided by ISO 11254-1,
which governs single shot laser-induced damage testing
[39]. The single shot test plan included ten sites per flu-
ence level, with site spacing of two to three times beam
diameter. The incident beam was horizontally polarized,
which corresponds to a left-right orientation in Figs. 6
and 8. Ten shot coated Ge morphologies are presented in
Fig. 6 with increasing levels of fluence �F�.

Fig. 5. (Color online) Wavelength dependence of � in present work, literature, and theory for Ge (left) and GaSb (right).

Fig. 6. (Color online) Evolution of ten shot per site damage in coated germanium at 2.5 �m using picosecond pulses.
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Very close to threshold in Fig. 6(a)), the coating was ab-
lated slightly, but there was no damage to the Ge surface,
demonstrating that the coating has a lower damage
threshold. The coating reduced the Fresnel surface reflec-
tion to 5% from 37%, allowing a greater irradiance to be
absorbed in the skin depth of the sample. This could pos-
sibly lower the surface LIDT; however it was clear that
the coating has a lower damage threshold as the coating
could damage without underlying surface damage. GaSb
damage morphology was similar to Ge, although higher
fluence levels were required to achieve damage.

Using the ISO 11254-1 method, the single shot thresh-
old for uncoated GaSb is measured in Fig. 7 to be
93 mJ/cm2, and the ten shot threshold is 65 mJ/cm2. The
picosecond single shot LIDTs for coated and uncoated Ge
are measured in the same manner and are reported in
Table 5, along with 10- and 30-shot LIDTs.

Nanosecond damage testing: In experiment VI, single-
pulse surface LIDT tests were conducted on GaSb, Ge,
and coated Ge at 2.5 �m using nanosecond pulses from
the gain-switched Cr2+:ZnSe laser. In the nanosecond
tests, the Ge damage morphology did not exhibit dramatic
scarring or boiling, only surface melting. For coated Ge, at
fluences very close to the threshold of 1.25 J/cm2, the
coating was ablated slightly without underlying surface
damage, confirming the observation from the picosecond
coated damage test. The lower melting point and specific
heat of GaSb caused greater surface modifications than
found in Ge as shown in Fig. 8 for single shot damage
sites. At a fluence near threshold, a series of thermal frac-
tures are visible in Fig. 8(a) which then proceed to
smoothly melt at higher fluences.

All damage threshold measurements are presented in
Table 5 for uncoated GaSb, uncoated Ge, and coated Ge
along with parameters characterizing the damage tests.
The uncertainty in the reported LIDT fluence resulting
from uncertainties in ro and pulse energy measurement
was calculated using the same propagation of errors
method as the NLA coefficients.

B. Modeling of Damage Thresholds
Pulse width ��p� scaling of the LIDT typically possesses a
�p

x dependence where x ranges from 0.4–0.5 [40], which
was confirmed with reported LIDT values and the model-
ing in Fig. 9. When using a �p

0.5 value of pulse width scal-
ing, the Ge �p=10 ps LIDT measurement was in excellent
agreement with the �p=68 ns LIDT (1.94 J/cm2 versus
1.85 J/cm2 predicted). Using this method, GaSb had a
�p

0.34 dependence on the pulse width. An iteration routine
was used with the FD model to find the pulse fluence that
will cause surface melting, and Fig. 9 presents measured
single pulse LIDTs (picosecond and nanosecond) for these
two materials overlaid with predicted thresholds from the
FD model. These predictions use no fitting parameters—
only measured NLA coefficients, measured beam param-
eters, carrier density dependent �R�N� from the literature,
and measured ��T�. The calculated error bars are smaller
than the symbol shapes due to the log-log presentation.

The range of pulse widths in Fig. 9 was bounded by
free-carrier diffusion and dielectric breakdown, which are
effects not included in the FD model. A free-carrier diffu-
sion length of 100 �m was selected as the constraint on
the longest pulse width modeled, which corresponds to a
pulse width of 500 (350) ns for Ge (GaSb). As the pulse
width is decreased toward the femtosecond regime, even-
tually a transition to dielectric breakdown will occur. The
shortest pulse width modeled corresponds to the pre-
dicted Keldysh theory transition [41,42], which was on
the order of �p=300 fs for these materials. %T designates
linear transmission through the uncoated samples as
measured on a spectrophotometer (Varian, Cary 5000). As
shown by the dotted lines in Fig. 9, the inclusion of ��T�
lowers the predicted LIDT by a factor of 2 for �p near 1 �s,
and only affects pulses longer than 100 ps.

The LIDT values are in good agreement with theory
with one exception—at a picosecond pulse width, Ge dam-
aged at a fluence level five times less than predicted. Pos-
sible causes for this discrepancy include field enhance-
ment and thermalization, but not dielectric breakdown,
which is predicted only if the irradiance were increased
by 1 order of magnitude. The incident electric field at sur-
face defects is known to be locally enhanced at a rate pro-
portional to n4 [31], giving Ge a 35% greater enhancement
over GaSb. This calculated enhancement is only based on
the difference in n, and the 20% greater surface rough-
ness of Ge will further magnify the field. While the hot-
carrier thermalization of Ge was not modeled as it was
beyond the scope of this study, its non-equilibrium phonon

Fig. 8. Evolution of single shot damage in uncoated GaSb at 2.5 �m using nanosecond pulses.

Fig. 7. (Color online) Picosecond LIDT measurement for un-
coated GaSb, using ISO-11254-1 method.
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decay time of 4 ps could certainly contribute toward a
lower LIDT for a 10 ps pulse width [43].

6. CONCLUSIONS
NLA coefficients (� and �) in Ge and GaSb at both 2.05
and 2.5 �m were reported, which were measured using a
simultaneous fit method and a finite difference (FD)
model developed in this work. Pulsed damage threshold
modeling was performed using measured NLA coefficients
and measured ��T�, and modeling was verified with ten
measurements of the LIDT across two pulse widths. In a
regime where NLA is dominant, the inclusion of ��T� low-
ers the predicted LIDT by a factor of 2 for �p near 1 �s,
and only affects pulses longer than 100 ps in these mate-
rials. Finally, a single-layer Al2O3 anti-reflective coating
on Ge was found to possess a lower LIDT than the un-
coated surface for both picosecond and nanosecond pulses.
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