239 research outputs found

    Pathognomonic oral profile of Enamel Renal Syndrome (ERS) caused by recessive FAM20A mutations

    Get PDF
    Amelogenesis imperfecta (AI) is a genetically and clinically heterogeneous group of inherited dental enamel defects. Commonly described as an isolated trait, it may be observed concomitantly with other orodental and/or systemic features such as nephrocalcinosis in Enamel Renal Syndrome (ERS, MIM#204690), or gingival hyperplasia in Amelogenesis Imperfecta and Gingival Fibromatosis Syndrome (AIGFS, MIM#614253). Patients affected by ERS/AIGFS present a distinctive orodental phenotype consisting of generalized hypoplastic AI affecting both the primary and permanent dentition, delayed tooth eruption, pulp stones, hyperplastic dental follicles, and gingival hyperplasia with variable severity and calcified nodules. Renal exam reveals a nephrocalcinosis which is asymptomatic in children affected by ERS. FAM20A recessive mutations are responsible for both syndromes. We suggest that AIGFS and ERS are in fact descriptions of the same syndrome, but that the kidney phenotype has not always been investigated fully in AIGFS. The aim of this review is to highlight the distinctive and specific orodental features of patients with recessive mutations in FAM20A. We propose ERS to be the preferred term for all the phenotypes arising from recessive FAM20A mutations. A differential diagnosis has to be made with other forms of AI, isolated or syndromic, where only a subset of the clinical signs may be shared. When ERS is suspected, the patient should be assessed by a dentist, nephrologist and clinical geneticist. Confirmed cases require long-term follow-up. Management of the orodental aspects can be extremely challenging and requires the input of multi-disciplinary specialized dental team, especially when there are multiple unerupted teeth

    Clinical phenotype of adolescent and adult patients with extracranial vascular malformation.

    Get PDF
    BACKGROUND In recent years, genotypic characterization of congenital vascular malformations (CVM) has gained attention; however, the spectrum of clinical phenotype remains difficult to attribute to a genetic cause and is rarely described in the adult population. AIM The aim of this study is to describe a consecutive series of adolescent and adult patients in a tertiary center, where a multimodal phenotypic approach was used for diagnosis. METHODS We analyzed clinical findings, imaging, and laboratory results at initial presentation, and set a diagnosis according to the International Society for the Study of Vascular Anomalies (ISSVA) classification for all consecutively registered patients older than 14 years of age who were referred to the Center for Vascular Malformations at the University Hospital of Bern between 2008 and 2021. RESULTS 457 patients were included for analysis (mean age 35 years; females 56%). Simple CVMs were the most common (n=361, 79 %), followed by CVM associated with other anomalies (n=70, 15%), and combined CVM (n=26, 6%). Venous malformations (n=238) were the most common CVM overall (52%), and the most common simple CVM (66%). Pain was the most frequently reported symptom in all patients (simple, combined and vascular malformation with other anomalies). Pain intensity was more pronounced in simple venous and arteriovenous malformation. Clinical problems were related to the type of CVM diagnosed, with bleeding and skin ulceration in arteriovenous malformations, localized intravascular coagulopathy in venous malformations and infectious complications in lymphatic malformations. Limb length difference occurred more often in patients with CVM associated with other anomalies as compared to simple or combined CVM (22.9 vs 2.3%, p< 0.001). Soft tissue overgrowth was seen in one quarter of all patients independent of the ISSVA group. CONCLUSIONS In our adult and adolescent population with peripheral vascular malformations, simple venous malformations predominated, with pain as the most common clinical symptom. In a quarter of cases, patients with vascular malformations presented with associated anomalies on tissue growth. The differentiation of clinical presentation with or without accompanying growth abnormalities need to be added to the ISSVA classification. Phenotypic characterization considering vascular and non-vascular features remains the cornerstone of diagnosis in adult-as well as pediatric patients

    Parkes Weber Syndrome: Contribution of the Genotype to the Diagnosis

    Get PDF
    Objectives: Parkes Weber syndrome (PWS) is a rare disorder that combines overgrowth, capillary malformations, and arteriovenous malformations (AVM)/arteriovenous fistulas, for which underlying activating mutations in the ras/mitogen-activated protein kinase/extracellular-signal-regulated kinase signaling pathway have been described. The clinical overlap with Klippel-Trenauny syndrome, associated with mutations in PIK3CA, is significant. This case series aimed to elaborate on the phenotypic description of PWS, to underline its clinical overlap with Klippel-Trenauny syndrome and nonsyndromic AVM, and to evaluate the contribution of genotypic characterization to the diagnosis. Methods: All patients diagnosed with PWS upon enrollment in the Bernese VAScular COngenital Malformations (VASCOM) cohort were included. The diagnostic criteria of PWS were retrospectively reviewed. A next-generation sequencing (NGS) gene panel (TSO500, Illumina) was used on tissue biopsy samples. Results: Overall, 10/559 patients of the VAScular COngenital Malformations cohort were initially diagnosed with PWS. Three patients were reclassified as nonsyndromic AVM (Kristen Rat Sarcoma Viral oncogene homolog [KRAS], KRAS+tumor protein p53, and protein tyrosine phosphatase non-receptor type 11). Finally, 7 patients fulfilled all clinical diagnostic criteria of PWS. Genetic testing was available in 5 PWS patients. Only 1 patient had the classic RASA1 mutation; another patient had mutations in G protein subunit alpha q (GNAQ) and phosphatase and tensin homolog. In a third case, a PIK3CA mutation was detected. In 2 patients, no mutations were identified. Conclusion: Overgrowth syndromes with vascular malformations are rare and their clinical overlap hampers the classification of individual phenotypes under specific syndrome labels, sometimes even despite genetic testing. To provide optimal patient care, an accurate phenotypic description combined with the identification of molecular targets for precision medicine may be more meaningful than the syndrome classification itself

    Two Cases of Cardiac Arteriovenous Malformation Complicated by a Local Angioproliferative Process

    Get PDF
    Vascular malformations of the heart are extremely rare with only a few cases of the arteriovenous type of vascular malformation (AVM) reported. We investigated the pathology of two additional cases, which were complicated by the occurrence of a local vasoproliferative response of immature but benign vessels. We suppose that the mass forming effect of this vasoproliferative response, which has also been reported recently as a complication of congenital AVM elsewhere in the body, has significantly contributed to the onset of symptoms and ultimate death of both patients

    Guidance for the Management of Patients with Vascular Disease or Cardiovascular Risk Factors and COVID-19: Position Paper from VAS-European Independent Foundation in Angiology/Vascular Medicine .

    Get PDF
    COVID-19 is also manifested with hypercoagulability, pulmonary intravascular coagulation, microangiopathy, and venous thromboembolism (VTE) or arterial thrombosis. Predisposing risk factors to severe COVID-19 are male sex, underlying cardiovascular disease, or cardiovascular risk factors including noncontrolled diabetes mellitus or arterial hypertension, obesity, and advanced age. The VAS-European Independent Foundation in Angiology/Vascular Medicine draws attention to patients with vascular disease (VD) and presents an integral strategy for the management of patients with VD or cardiovascular risk factors (VD-CVR) and COVID-19. VAS recommends (1) a COVID-19-oriented primary health care network for patients with VD-CVR for identification of patients with VD-CVR in the community and patients' education for disease symptoms, use of eHealth technology, adherence to the antithrombotic and vascular regulating treatments, and (2) close medical follow-up for efficacious control of VD progression and prompt application of physical and social distancing measures in case of new epidemic waves. For patients with VD-CVR who receive home treatment for COVID-19, VAS recommends assessment for (1) disease worsening risk and prioritized hospitalization of those at high risk and (2) VTE risk assessment and thromboprophylaxis with rivaroxaban, betrixaban, or low-molecular-weight heparin (LMWH) for those at high risk. For hospitalized patients with VD-CVR and COVID-19, VAS recommends (1) routine thromboprophylaxis with weight-adjusted intermediate doses of LMWH (unless contraindication); (2) LMWH as the drug of choice over unfractionated heparin or direct oral anticoagulants for the treatment of VTE or hypercoagulability; (3) careful evaluation of the risk for disease worsening and prompt application of targeted antiviral or convalescence treatments; (4) monitoring of D-dimer for optimization of the antithrombotic treatment; and (5) evaluation of the risk of VTE before hospital discharge using the IMPROVE-D-dimer score and prolonged post-discharge thromboprophylaxis with rivaroxaban, betrixaban, or LMWH

    Retinoic Acid Mediates Regulation of Network Formation by COUP-TFII and VE-Cadherin Expression by TGFβ Receptor Kinase in Breast Cancer Cells

    Get PDF
    Tumor development, growth, and metastasis depend on the provision of an adequate vascular supply. This can be due to regulated angiogenesis, recruitment of circulating endothelial progenitors, and/or vascular transdifferentiation. Our previous studies showed that retinoic acid (RA) treatment converts a subset of breast cancer cells into cells with significant endothelial genotypic and phenotypic elements including marked induction of VE-cadherin, which was responsible for some but not all morphological changes. The present study demonstrates that of the endothelial-related genes induced by RA treatment, only a few were affected by knockdown of VE-cadherin, ruling it out as a regulator of the RA-induced endothelial genotypic switch. In contrast, knockdown of the RA-induced gene COUP-TFII prevented the formation of networks in Matrigel but had no effect on VE-cadherin induction or cell fusion. Two pan-kinase inhibitors markedly blocked RA-induced VE-cadherin expression and cell fusion. However, RA treatment resulted in a marked and broad reduction in tyrosine kinase activity. Several genes in the TGFβ signaling pathway were induced by RA, and specific inhibition of the TGFβ type I receptor blocked both RA-induced VE-cadherin expression and cell fusion. Together these data indicate a role for the TGFβ pathway and COUP-TFII in mediating the endothelial transdifferentiating properties of RA

    Loss-of-Function Mutations in PTPN11 Cause Metachondromatosis, but Not Ollier Disease or Maffucci Syndrome

    Get PDF
    Metachondromatosis (MC) is a rare, autosomal dominant, incompletely penetrant combined exostosis and enchondromatosis tumor syndrome. MC is clinically distinct from other multiple exostosis or multiple enchondromatosis syndromes and is unlinked to EXT1 and EXT2, the genes responsible for autosomal dominant multiple osteochondromas (MO). To identify a gene for MC, we performed linkage analysis with high-density SNP arrays in a single family, used a targeted array to capture exons and promoter sequences from the linked interval in 16 participants from 11 MC families, and sequenced the captured DNA using high-throughput parallel sequencing technologies. DNA capture and parallel sequencing identified heterozygous putative loss-of-function mutations in PTPN11 in 4 of the 11 families. Sanger sequence analysis of PTPN11 coding regions in a total of 17 MC families identified mutations in 10 of them (5 frameshift, 2 nonsense, and 3 splice-site mutations). Copy number analysis of sequencing reads from a second targeted capture that included the entire PTPN11 gene identified an additional family with a 15 kb deletion spanning exon 7 of PTPN11. Microdissected MC lesions from two patients with PTPN11 mutations demonstrated loss-of-heterozygosity for the wild-type allele. We next sequenced PTPN11 in DNA samples from 54 patients with the multiple enchondromatosis disorders Ollier disease or Maffucci syndrome, but found no coding sequence PTPN11 mutations. We conclude that heterozygous loss-of-function mutations in PTPN11 are a frequent cause of MC, that lesions in patients with MC appear to arise following a “second hit,” that MC may be locus heterogeneous since 1 familial and 5 sporadically occurring cases lacked obvious disease-causing PTPN11 mutations, and that PTPN11 mutations are not a common cause of Ollier disease or Maffucci syndrome

    Refinement of 1p36 Alterations Not Involving PRDM16 in Myeloid and Lymphoid Malignancies

    Get PDF
    Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis

    Severe autosomal recessive retinitis pigmentosa maps to chromosome 1p13.3–p21.2 between D1S2896 and D1S457 but outside ABCA4

    Full text link
    A severe form of autosomal recessive retinitis pigmentosa (arRP) was identified in a large Pakistani family ascertained in the Punjab province of Pakistan. All affected individuals in the family had night blindness in early childhood, early complete loss of useful vision, and typical RP fundus changes plus macular degeneration. After exclusion of known arRP loci, a genome-wide scan was performed using microsatellite markers at about 10 cM intervals and calculating two-point lod scores. PCR cycle dideoxynucleotide sequencing was used to sequence candidate genes inside the linked region for mutations. RP in this family shows linkage to markers in a 10.5 cM (8.9 Mbp) region of chromosome 1p13.3–p21.2 between D1S2896 and D1S457. D1S485 yields the highest lod score of 6.54 at θ=0. Sequencing the exons and intron–exon boundaries of five candidate genes and six ESTs in this region, OLFM3, GNAI3, LOC126987, FLJ25070, DKFZp586G0123, AV729694, BU662869, BU656110, BU171991, BQ953690, and CA397743, did not identify any causative mutations. This novel locus lies approximately 4.9 cM (7.1 Mbp) from ABCA4, which is excluded from the linked region. Identification and study of this gene may help to elucidate the phenotypic diversity of arRP mapping to this region.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47597/1/439_2005_Article_54.pd
    corecore