123 research outputs found

    Deformation mechanisms and damage of oxide dispersion strengthened steels at high temperature

    Get PDF
    International audienceA ferritic oxide dispersion strengthened steel is under study for fuel cladding applications in future nuclear systems. Tensile tests and creep tests are carried out at various temperatures to determine its mechanical properties along the extrusion direction. For these two types of loading, the material exhibits a high mechanical resistance. Its ductility appears to be strongly influenced by the strain rate and the temperature. Deformation mechanisms linked to diffusion phenomena are suspected and intergranular damage is observed on fractured specimens

    Ancient Greek text concealed on the back of unrolled papyrus revealed through Shortwave-Infrared Hyperspectral Imaging

    Get PDF
    Only a few Herculaneum rolls exhibit writing on their reverse side. Since unrolled papyri are permanently glued to paperboard, so far, this fact was known to us only from 18th-century drawings. The application of shortwave-infrared (SWIR; 1000-2500 nm) hyperspectral imaging (HSI) to one of them (PHerc. 1691/1021) has revealed portions of Greek text hidden on the back more than 220 years after their first discovery, making it possible to recover this primary source for the ongoing new edition of this precious book. SWIR HSI has produced better contrast and legibility even on the extensive text preserved on the front compared to former imaging of Herculaneum papyri at 950 nm (improperly called multispectral imaging), with a substantial impact on the text reconstruction. These promising results confirm the importance of advanced techniques applied to ancient carbonized papyri and open the way to a better investigation of hundreds of other such papyri

    Thermal performance of GaInSb quantum well lasers for silicon photonics applications

    Get PDF
    A key component for the realization of silicon-photonics is an integrated laser operating in the important communication band near 1.55 μm. One approach is through the use of GaSb-based alloys, which may be grown directly on silicon. In this study, silicon-compatible strained Ga0.8In0.2Sb/Al0.68In0.32Sb composite quantum well (CQW) lasers grown on GaSb substrates emitting at 1.55 μm have been developed and investigated in terms of their thermal performance. Variable temperature and high-pressure techniques were used to investigate the influence of device design on performance. These measurements show that the temperature dependence of the devices is dominated by carrier leakage from the QW region to the Xb minima of the Al0.35Ga0.65As0.03Sb0.97 barrier layers accounting for up to 43% of the threshold current at room temperature. Improvement in device performance may be possible through refinements in the CQW design, while carrier confinement may be improved by optimization of the barrier layer composition. This investigation provides valuable design insights for the monolithic integration of GaSb-based lasers on silicon

    GaSb-based solar cells for multi-junction integration on Si substrates

    Get PDF
    We report on the first single-junction GaSb solar cell epitaxially grown on a Si substrate. A control stand-alone GaSb solar cell was primarily fabricated, which demonstrated a 5.90% efficiency (AM1.5G). The preparation, growth and manufacturing procedures were then adapted to create the GaSb-on-Si solar cell. The hybrid device resulted in a degraded efficiency for which comparison between experimental and simulated data revealed dominant non-radiative recombination processes. Material and electrical characterization also highlighted the impact of anti-phase domains and boundaries and threading dislocation density on the shunt resistance of the cell. Nevertheless, the GaSb-on-Si cell performance is close to recent results on the integration of GaSb solar cells on GaAs, despite a much larger lattice mismatch (12% vs 8%). Routes for improvement, concerning the material quality and cell structure, are proposed. This work lays the foundations of a GaSb-based multi-junction solar cell monolithically integrated on Si

    Corrosion of the International Simple Glass under acidic to hyperalkaline conditions

    Get PDF
    Assessment of glass dissolution kinetics, under disposal relevant temperature and pH environments, is required to credibly estimate radionuclide release rates from vitrified radioactive waste. Leaching of the International Simple Glass (ISG) under acidic to hyperalkaline conditions was examined. Forward rate measurements have been obtained using the dynamic leaching SPFT protocol and rate parameters for B, Na and Si in the basic regime; errors in rates predicted using these parameters at high pH and temperature are significant because the fitting uses logarithmic data. Longer term behaviour under hyperalkaline conditions, representative of some disposal environments, was investigated using the PCT and MCC-1 static leaching protocols with Ca(OH)2 solutions for up to 120 days (PCT) and 720 days (MCC-1). In hyperalkaline conditions dissolution was incongruent for all elements and the presence of alternating zirconia-rich and zirconia-poor alteration layers was observed on all leached monoliths, indicating the occurrence of a self-organisation phenomenon during leaching

    Bullet impacts and built heritage damage 1640–1939

    Get PDF
    © 2018, The Author(s). Conflict damage to heritage has been thrust into the global spotlight during recent conflict in the Middle East. While the use of social media has heightened and enhanced public awareness of this ‘cultural terrorism’, the occurrence of this type of vandalism is not new. In fact, as this study demonstrates, evidence of the active targeting of sites, as well as collateral damage when heritage is caught in crossfire, is widely visible around Europe and further afield. Using a variety of case studies ranging from the 1640s to the 1930s, we illustrate and quantify the changing impact of ballistics on heritage buildings as weaponry and ammunition have increased in both energy and energy density potential. In the first instance, this study highlights the increasing threats to heritage in conflict areas. Second, it argues for the pressing need to quantify and map damage to the stonework in order to respond to these challenges

    The InAs/GaSb/InSb short-period superlattice: an active zone for mid-IR lasers

    No full text
    International audienc
    • …
    corecore