68 research outputs found

    Development of q-PCR approaches to assess water quality: Effects of cadmium on gene expression of the diatom Eolimna minima

    No full text
    This study was undertaken to develop molecular tools to assess water quality using diatoms as the biological model. Molecular approaches were designed following the development of a rapid and easy RNA extraction method suited to diatoms and the sequencing of genes involved in mitochondrial and photosystem metabolism. Secondly the impact of cadmium was evaluated at the genetic level by q-PCR on 9 genes of interest after exposure of Eolimna minima diatom populations cultured in suspension under controlled laboratory conditions. Their growth kinetics and Cd bioaccumulation were followed.Population growth rates revealed the high impact of Cd at 100μg/L with total inhibition of growth. These results are linked to the high bioaccumulation values calculated after 14 days of exposure, 57.0±6.3μg. Cd/g. dw and 734.1±70μg. Cd/g. dw for exposures of 10 and 100μg. Cd/L respectively.Genetic responses revealed the impact of Cd on the mitochondrial metabolism and the chloroplast photosystem of E. minima exposed to 10 and 100μg. Cd/L with induction of cox1, 12S, d1 and psaA after 7 days of exposure for the concentration of 100μg. Cd/L and of nad5, d1 and psaA after 14 days of exposure for both conditions.This is the first reported use of q-PCR for the assessment of toxic pollution on benthic river diatoms. The results obtained presage interesting perspectives, but the techniques developed need to be optimized before the design of new water quality diagnosis tools for use on natural biofilms

    Integrating pediatric TB services into child healthcare services in Africa: study protocol for the INPUT cluster-randomized stepped wedge trial

    Get PDF
    Background Tuberculosis is among the top-10 causes of mortality in children with more than 1 million children suffering from TB disease annually worldwide. The main challenge in young children is the difficulty in establishing an accurate diagnosis of active TB. The INPUT study is a stepped-wedge cluster-randomized intervention study aiming to assess the effectiveness of integrating TB services into child healthcare services on TB diagnosis capacities in children under 5 years of age. Methods Two strategies will be compared: i) The standard of care, offering pediatric TB services based on national standard of care; ii) The intervention, with pediatric TB services integrated into child healthcare services: it consists of a package of training, supportive supervision, job aids, and logistical support to the integration of TB screening and diagnosis activities into pediatric services. The design is a cluster-randomized stepped-wedge of 12 study clusters in Cameroon and Kenya. The sites start enrolling participants under standard-of-care and will transition to the intervention at randomly assigned time points. We enroll children aged less than 5 years with a presumptive diagnosis of TB after obtaining caregiver written informed consent. The participants are followed through TB diagnosis and treatment, with clinical information prospectively abstracted from their medical records. The primary outcome is the proportion of TB cases diagnosed among children < 5 years old attending the child healthcare services. Secondary outcomes include: number of children screened for presumptive active TB; diagnosed; initiated on TB treatment; and completing treatment. We will also assess the cost-effectiveness of the intervention, its acceptability among health care providers and users, and fidelity of implementation. Discussion Study enrolments started in May 2019, enrolments will be completed in October 2020 and follow up will be completed by June 2021. The study findings will be disseminated to national, regional and international audiences and will inform innovative approaches to integration of TB screening, diagnosis, and treatment initiation into child health care services. Trial resistration NCT03862261, initial release 12 February 2019

    A review of copolymerization of green house gas carbon dioxide and oxiranes to produce polycarbonate

    Get PDF
    Carbon dioxide is highly stable and low reactivity element which is known to cause greenhouse effect of the Earth. Over the decades, researches have been conducted to utilize abundant carbon dioxide to turn into value added products while reducing its impact to the environment. One of the approaches is reacting carbon dioxide with oxiranes to produce polycarbonate. The low reactivity characteristic of carbon dioxide requires effective and efficient catalysts to make the copolymerization possible. This review highlights the major development in the catalytic copolymerization process of oxiranes and carbon dioxide. Particularly, the important characteristics of zinc, aluminium, chromium, cobalt, cadmium, manganese and rare earth metal with variety of ligands catalysts have been thoroughly discussed. The future research prospects which involve working in the copolymerization area of nanocatalysis and supercritical fluid have been analysed also. In overall, continual exploration of catalysis and reaction package for copolymerization of carbon dioxide is important in order to achieve better improvement of process in future

    A bright cadmium-free, hybrid organic/quantum dot white light-emitting diode

    Get PDF
    We report a bright cadmium-free, InP-based quantum dot light-emitting diode (QD-LED) with efficient green emission. A maximum brightness close to 700 cd/m2 together with a relatively low turn-on voltage of 4.5 V has been achieved. With the design of a loosely packed QD layer resulting in the direct contact of poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl) benzidine] (poly-TPD) and 2,2′,2″-(1,3,5-benzinetriyl)-tris(1- phenyl-1-H-benzimidazole) (TPBi) in the device, a ternary complementary white QD-LED consisting of blue component (poly-TPD), green component (QDs), and red component (exciplex formed at the interface between poly-TPD and TPBi) has been demonstrated. The resulting white QD-LED shows an excellent color rendering index of 95. © 2012 American Institute of Physics

    Transformation, adaptation and development: relating concepts to practice

    Get PDF
    In recent years there has been a growing number of academic reviews discussing the theme of transformation and its association with adaptation to climate change. On the one hand this has stimulated exchange of ideas and perspectives on the parameters of transformation, but it has also given rise to confusion in terms of identifying what constitutes a non-incremental form of adaptation on the ground. What this article aims to do instead is help researchers and practitioners relate different interpretations of transformation to practice by proposing a typological framework for categorising forms of change that focuses on mechanisms and objectives. It then discusses how these categorisations link to the broader conceptions and critiques noted above, with the idea that this will enable those who seek to analyse or plan adaptation to better analyse what types of action are potentially constitutive of transformation. In doing so, it should equally assist in the identification and specification of critical questions that need to be asked of such activity in relation to issues of sustainability and equity. As the term transformation gains ground in discussions of climate change adaptation, it is necessary to take a step back, review quite what commentators mean when they use the word, and consider the implications on people, especially the most vulnerable and marginalised, of “doing” or promoting transformation in its different forms

    Secondary metabolites from Triclisia gilletii (De Wild) Staner (Menispermaceae) with antimycobacterial activity against Mycobacterium tuberculosis

    Get PDF
    Triclisinone (2), a new ochnaflavone derivative, was isolated from the aerial parts of Triclisia gilletii, along with known drypemolundein B (1) and eight other known compounds. The chemical shifts of drypemolundein B (1) have been partially revised based on reinterpretation of NMR spectroscopic data. The eight other secondary metabolites are composed of: (+)-nonacosan-10-ol (3); stigmasterol (4), 3-O-β-D- glucopyranosylsitosterol (5), 3-O-β-D-glucopyranosylstigmasterol (6); oleanic acid (7); myricetin (8), quercetin (9) and 3-methoxyquercetin (10). Their structures were elucidated using IR, MS, NMR 1D and 2D, 1H and 13C and comparison with literature data. Furthermore, compounds 1, 2, 5, 6, 8, 9 and the crude extract were tested against Mycobacterium tuberculosis. Compounds 1, 2, 8 and 9 displayed moderate to very good activity against resistant strain (codified AC 45) of M. tuberculosis with minimum inhibitory concentrations MICs ranging from 3.90 to 62.5 μg/mL

    Cardiomyocyte Specific Ablation of p53 Is Not Sufficient to Block Doxorubicin Induced Cardiac Fibrosis and Associated Cytoskeletal Changes

    Get PDF
    Doxorubicin (Dox) is an anthracycline used to effectively treat several forms of cancer. Unfortunately, the use of Dox is limited due to its association with cardiovascular complications which are manifested as acute and chronic cardiotoxicity. The pathophysiological mechanism of Dox induced cardiotoxicity appears to involve increased expression of the tumor suppressor protein p53 in cardiomyocytes, followed by cellular apoptosis. It is not known whether downregulation of p53 expression in cardiomyocytes would result in decreased rates of myocardial fibrosis which occurs in response to cardiomyocyte loss. Further, it is not known whether Dox can induce perivascular necrosis and associated fibrosis in the heart. In this study we measured the effects of acute Dox treatment on myocardial and perivascular apoptosis and fibrosis in a conditional knockout (CKO) mouse model system which harbours inactive p53 alleles specifically in cardiomyocytes. CKO mice treated with a single dose of Dox (20 mg/kg), did not display lower levels of myocardial apoptosis or reactive oxygen and nitrogen species (ROS/RNS) compared to control mice with intact p53 alleles. Interestingly, CKO mice also displayed higher levels of interstitial and perivascular fibrosis compared to controls 3 or 7 days after Dox treatment. Additionally, the decrease in levels of the microtubule protein α-tubulin, which occurs in response to Dox treatment, was not prevented in CKO mice. Overall, these results indicate that selective loss of p53 in cardiomyocytes is not sufficient to prevent Dox induced myocardial ROS/RNS generation, apoptosis, interstitial fibrosis and perivascular fibrosis. Further, these results support a role for p53 independent apoptotic pathways leading to Dox induced myocardial damage and highlight the importance of vascular lesions in Dox induced cardiotoxicity

    Track E Implementation Science, Health Systems and Economics

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138412/1/jia218443.pd

    Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers

    Get PDF
    Flexible information displays are key elements in future optoelectronic devices. Quantum dot light-emitting diodes (QLEDs) with advantages in color quality, stability, and cost-effectiveness are emerging as a candidate for single-material, full color light sources. Despite the recent advances in QLED technology, making high-performance flexible QLEDs still remains a big challenge due to limited choices of proper materials and device architectures as well as poor mechanical stability. Here, we show highly efficient, large-area QLED tapes emitting in red, green, and blue (RGB) colors with top-emitting design and polyimide tapes as flexible substrates. The brightness and quantum efficiency are 20 000 cd/m2 and 4.03%, respectively, the highest values reported for flexible QLEDs. Besides the excellent electroluminescence performance, these QLED films are highly flexible and mechanically robust to use as electrically driven light-emitting stickers by placing on or removing from any curved surface, facilitating versatile LED applications. Our QLED tapes present a step toward practical quantum dot based platforms for high-performance flexible displays and solid-state lighting. © 2014 American Chemical Society
    corecore