143 research outputs found

    Body weight and the medial longitudinal foot arch : high-arched foot, a hidden problem?

    Get PDF
    This study had two objectives. First, to determine the prevalence of hollow (high-arched) and flat foot among primary school children in Cracow (Poland). Second, to evaluate the relationship between the type of medial longitudinal arch (MLA; determined by the Clarke’s angle) and degree of fatness. The prevalence of underweight, overweight, and obesity was determined by means of IOTF cut-offs with respect to age and gender. A sample of 1,115 children (564 boys and 551 girls) aged between 3 and 13 years was analyzed. In all age groups, regardless of gender, high-arched foot was diagnosed in the majority of children. A distinct increase in the number of children with high-arched foot was observed between 7- and 8-year olds. Regardless of the gender, high-arched foot was more common among underweight children. In the group of obese children, the biggest differences were attributed to gender. High-arched foot was the most frequently observed among boys. In all gender and obesity level groups, the flat foot was more common among boys than among girls. Conclusions: High-arched foot is the most common foot defect among children 3–13 years old regardless of gender. Flat foot is least frequently observed in children 3–13 years old. A statistic correlation between MLA and adiposity is observed. Stronger correlation is observed among girls

    The Absolute Magnitude of RRc Variables From Statistical Parallax

    Full text link
    We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 247 RRc selected from the All Sky Automated Survey (ASAS) for which high-quality light curves, photometry and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey (CARRS). We find that M_(V,RRc) = 0.52 +/- 0.11 at a mean metallicity of [Fe/H] = -1.59. This is to be compared with previous estimates for RRab stars (M_(V,RRab) = 0.75 +/- 0.13 and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M_(V, RRc) = 0.27 +/- 0.17). We find the bulk velocity of the halo to be (W_pi, W_theta, W_z) = (10.9,34.9,7.2) km/s in the radial, rotational and vertical directions with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (154.7, 103.6, 93.8) km/s. For the disk, we find (W_pi, W_theta, W_z) = (8.5, 213.2, -22.1) km/s with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (63.5, 49.6, 51.3) km/s. Finally, we suggest that UCAC2 proper motion errors may be overestimated by about 25%Comment: Submitted to ApJ. 11 pages including 6 figure

    Ethics of cadaveric organ procurement and allocation (II).

    Get PDF
    Transplant Proc. 2003 May;35(3):1219-20. Ethics of cadaveric organ procurement and allocation (II). Michałowicz B, Rev K Szczygieł, Safjan M, Rzepliński A, Land W, Norton de Matos A, Sister B Chyrowicz, Rev W Bołoz, Yussim A, Wichrowski M. PMID: 12947911 [PubMed - indexed for MEDLINE

    Discovery and Observations of ASASSN-13db, an EX Lupi-Type Accretion Event on a Low-Mass T Tauri Star

    Get PDF
    We discuss ASASSN-13db, an EX Lupi-type ("EXor") accretion event on the young stellar object (YSO) SDSS J051011.01-032826.2 (hereafter SDSSJ0510) discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). Using archival photometric data of SDSSJ0510 we construct a pre-outburst spectral energy distribution (SED) and find that it is consistent with a low-mass class II YSO near the Orion star forming region (d420d \sim 420 pc). We present follow-up photometric and spectroscopic observations of the source after the ΔV\Delta V \sim-5.4 magnitude outburst that began in September 2013 and ended in early 2014. These data indicate an increase in temperature and luminosity consistent with an accretion rate of 107\sim10^{-7} M\rm{M}_\odot yr1^{-1}, three or more orders of magnitude greater than in quiescence. Spectroscopic observations show a forest of narrow emission lines dominated by neutral metallic lines from Fe I and some low-ionization lines. The properties of ASASSN-13db are similar to those of the EXor prototype EX Lupi during its strongest observed outburst in late 2008.Comment: 14 pages, 4 figures, 1 table. Updated May 2014 to reflect changes in the final version published in ApJL. Photometric data presented in this submission are included as ancillary files. For a brief video explaining this paper, see http://youtu.be/yRCCrNJnvt

    Discovery of the 2010 Eruption and the Pre-Eruption Light Curve for Recurrent Nova U Scorpii

    Get PDF
    We report the discovery by B. G. Harris and S. Dvorak on JD 2455224.9385 (2010 Jan 28.4385 UT) of the predicted eruption of the recurrent nova U Scorpii (U Sco). We also report on 815 magnitudes (and 16 useful limits) on the pre-eruption light curve in the UBVRI and Sloan r' and i' bands from 2000.4 up to 9 hours before the peak of the January 2010 eruption. We found no significant long-term variations, though we did find frequent fast variations (flickering) with amplitudes up to 0.4 mag. We show that U Sco did not have any rises or dips with amplitude greater than 0.2 mag on timescales from one day to one year before the eruption. We find that the peak of this eruption occurred at JD 2455224.69+-0.07 and the start of the rise was at JD 2455224.32+-0.12. From our analysis of the average B-band flux between eruptions, we find that the total mass accreted between eruptions is consistent with being a constant, in agreement with a strong prediction of nova trigger theory. The date of the next eruption can be anticipated with an accuracy of +-5 months by following the average B-band magnitudes for the next ~10 years, although at this time we can only predict that the next eruption will be in the year 2020+-2.Comment: Astronomical Journal submitted, 36 pages, 3 figures, full table

    Variability of Luminous Stars in the Large Magellanic Cloud Using 10 Years of ASAS Data

    Get PDF
    Motivated by the detection of a recent outburst of the massive luminous blue variable LMC-R71, which reached an absolute magnitude M_V = -9.3 mag, we undertook a systematic study of the optical variability of 1268 massive stars in the Large Magellanic Cloud, using a recent catalog by Bonanos et al. (2009) as the input. The ASAS All Star Catalog (Pojmanski 2002) provided well-sampled light curves of these bright stars spanning 10 years. Combining the two catalogs resulted in 599 matches, on which we performed a variability search. We identified 117 variable stars, 38 of which were not known before, despite their brightness and large amplitude of variation. We found 13 periodic stars that we classify as eclipsing binary (EB) stars, eight of which are newly discovered bright, massive eclipsing binaries composed of OB type stars. The remaining 104 variables are either semi- or non-periodic, the majority (85) being red supergiants. Most (26) of the newly discovered variables in this category are also red supergiants with only three B and four O stars.Comment: 23 pages, 10 figures and 3 tables; published in A

    Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - IV. A 0.61 + 0.45 M_sun binary in a multiple system

    Get PDF
    We present the orbital and physical parameters of a newly discovered low-mass detached eclipsing binary from the All-Sky Automated Survey (ASAS) database: ASAS J011328-3821.1 A - a member of a visual binary system with the secondary component separated by about 1.4 seconds of arc. The radial velocities were calculated from the high-resolution spectra obtained with the 1.9-m Radcliffe/GIRAFFE, 3.9-m AAT/UCLES and 3.0-m Shane/HamSpec telescopes/spectrographs on the basis of the TODCOR technique and positions of H_alpha emission lines. For the analysis we used V and I band photometry obtained with the 1.0-m Elizabeth and robotic 0.41-m PROMPT telescopes, supplemented with the publicly available ASAS light curve of the system. We found that ASAS J011328-3821.1 A is composed of two late-type dwarfs having masses of M_1 = 0.612 +/- 0.030 M_sun, M_2 = 0.445 +/- 0.019 M_sun and radii of R_1 = 0.596 +/- 0.020 R_sun, R_2 = 0.445 +/- 0.024 R_sun, both show a substantial level of activity, which manifests in strong H_alpha and H_beta emission and the presence of cool spots. The influence of the third light on the eclipsing pair properties was also evaluated and the photometric properties of the component B were derived. Comparison with several popular stellar evolution models shows that the system is on its main sequence evolution stage and probably is more metal rich than the Sun. We also found several clues which suggest that the component B itself is a binary composed of two nearly identical ~0.5 M_sun stars.Comment: 12 pages, 7 figures, 7 tables, to appear in MNRA

    Crossing the Gould Belt in the Orion vicinity

    Full text link
    We present a study of the large-scale spatial distribution of 6482 RASS X-ray sources in approximately 5000 deg^2 in the direction of Orion. We examine the astrophysical properties of a sub-sample of ~100 optical counterparts, using optical spectroscopy. This sub-sample is used to investigate the space density of the RASS young star candidates by comparing X-ray number counts with Galactic model predictions. We characterize the observed sub-sample in terms of spectral type, lithium content, radial and rotational velocities, as well as iron abundance. A population synthesis model is then applied to analyze the stellar content of the RASS in the studied area. We find that stars associated with the Orion star-forming region do show a high lithium content. A population of late-type stars with lithium equivalent widths larger than Pleiades stars of the same spectral type (hence younger than ~70-100 Myr) is found widely spread over the studied area. Two new young stellar aggregates, namely "X-ray Clump 0534+22" (age~2-10 Myr) and "X-ray Clump 0430-08" (age~2-20 Myr), are also identified. The spectroscopic follow-up and comparison with Galactic model predictions reveal that the X-ray selected stellar population in the direction of Orion is characterized by three distinct components, namely the clustered, the young dispersed, and the widespread field populations. The clustered population is mainly associated with regions of recent or ongoing star formation and correlates spatially with molecular clouds. The dispersed young population follows a broad lane apparently coinciding spatially with the Gould Belt, while the widespread population consists primarily of active field stars older than 100 Myr. We expect the "bi-dimensional" picture emerging from this study to grow in depth as soon as the distance and the kinematics of the studied sources will become available from the future Gaia mission.Comment: 17 pages, 13 figures, 4 tables. Accepted for publication in Astronomy and Astrophysics. Abstract shortene
    corecore