111 research outputs found

    The Ecology of Individuals: Incidence and Implications of Individual Specialization

    Get PDF
    Most empirical and theoretical studies of resource use and population dynamics treat conspecific individuals as ecologically equivalent. This simplification is only justified if interindividual niche variation is rare, weak, or has a trivial effect on ecological processes. This article reviews the incidence, degree, causes, and implications of individual-level niche variation to challenge these simplifications. Evidence for individual specialization is available for 93 species dis- tributed across a broad range of taxonomic groups. Although few studies have quantified the degree to which individuals are specialized relative to their population, between-individual variation can some- times comprise the majority of the population’s niche width. The degree of individual specialization varies widely among species and among populations, reflecting a diverse array of physiological, be- havioral, and ecological mechanisms that can generate intrapopu- lation variation. Finally, individual specialization has potentially im- portant ecological, evolutionary, and conservation implications. Theory suggests that niche variation facilitates frequency-dependent interactions that can profoundly affect the population’s stability, the amount of intraspecific competition, fitness-function shapes, and the population’s capacity to diversify and speciate rapidly. Our collection of case studies suggests that individual specialization is a widespread but underappreciated phenomenon that poses many important but unanswered questions

    Availability of food resources and habitat structure shape the individual‐resource network of a Neotropical marsupial

    Get PDF
    1. Spatial and temporal variation in networks has been reported in different studies. However, the many effects of habitat structure and food resource availability variation on network structures have remained poorly investigated, especially in individual‐ based networks. This approach can shed light on individual specialization of resource use and how habitat variations shape trophic interactions. 2. To test hypotheses related to habitat variability on trophic interactions, we investigated seasonal and spatial variation in network structure of four populations of the marsupial Gracilinanus agilis in the highly seasonal tropical savannas of the Brazilian Cerrado. 3. We evaluated such variation with network nestedness and modularity considering both cool‐dry and warm‐wet seasons, and related such variations with food resource availability and habitat structure (considered in the present study as environmental variation) in four sites of savanna woodland forest. 4. Network analyses showed that modularity (but not nestedness) was consistently lower during the cool‐dry season in all G. agilis populations. Our results indicated that nestedness is related to habitat structure, showing that this metric increases in sites with thick and spaced trees. On the other hand, modularity was positively related to diversity of arthropods and abundance of fruits. 5. We propose that the relationship between nestedness and habitat structure is an outcome of individual variation in the vertical space and food resource use by G. agilis in sites with thick and spaced trees. Moreover, individual specialization in resource‐rich and population‐dense periods possibly increased the network modularity of G. agilis. Therefore, our study reveals that environment variability considering spatial and temporal components is important for shaping network structure of populations

    The dynamic trophic niche of an island bird of prey

    Get PDF
    Optimal foraging theory predicts an inverse relationship between the availability of preferred prey and niche width in animals. Moreover, when individuals within a population have identical prey preferences and preferred prey is scarce, a nested pattern of trophic niche is expected if opportunistic and selective individuals can be identified. Here, we examined intraspecific variation in the trophic niche of a resident population of striated caracara (Phalcoboenus australis) on Isla de los Estados (Staten Island), Argentina, using pellet and stable isotope analyses. While this raptor specializes on seabird prey, we assessed this population\u27s potential to forage on terrestrial prey, especially invasive herbivores as carrion, when seabirds are less accessible. We found that the isotopic niche of this species varies with season, age, breeding status, and, to a lesser extent, year. Our results were in general consistent with classic predictions of the optimal foraging theory, but we also explore other possible explanations for the observed pattern. Isotopic niche was broader for groups identified a priori as opportunistic (i.e., nonbreeding adults during the breeding season and the whole population during the nonbreeding season) than it was for individuals identified a priori as selective. Results suggested that terrestrial input was relatively low, and invasive mammals accounted for no more than 5% of the input. The seasonal pulse of rockhopper penguins likely interacts with caracara\u27s reproductive status by constraining the spatial scale on which individuals forage. Niche expansion in spatially flexible individuals did not reflect an increase in terrestrial prey input; rather, it may be driven by a greater variation in the types of marine prey items consumed

    A Novel Resource Polymorphism in Fish, Driven by Differential Bottom Environments: An Example from an Ancient Lake in Japan

    Get PDF
    Divergent natural selection rooted in differential resource use can generate and maintain intraspecific eco-morphological divergence (i.e., resource polymorphism), ultimately leading to population splitting and speciation. Differing bottom environments create lake habitats with different benthos communities, which may cause selection in benthivorous fishes. Here, we document the nature of eco-morphological and genetic divergence among local populations of the Japanese gudgeon Sarcocheilichthys (Cyprinidae), which inhabits contrasting habitats in the littoral zones (rocky vs. pebbly habitats) in Lake Biwa, a representative ancient lake in East Asia. Eco-morphological analyses revealed that Sarcocheilichthys variegatus microoculus from rocky and pebbly zones differed in morphology and diet, and that populations from rocky environments had longer heads and deeper bodies, which are expected to be advantageous for capturing cryptic and/or attached prey in structurally complex, rocky habitats. Sarcocheilichthys biwaensis, a rock-dwelling specialist, exhibited similar morphologies to the sympatric congener, S. v. microoculus, except for body/fin coloration. Genetic analyses based on mitochondrial and nuclear microsatellite DNA data revealed no clear genetic differentiation among local populations within/between the gudgeon species. Although the morphogenetic factors that contribute to morphological divergence remain unclear, our results suggest that the gudgeon populations in Lake Biwa show a state of resource polymorphism associated with differences in the bottom environment. This is a novel example of resource polymorphism in fish within an Asian ancient lake, emphasizing the importance and generality of feeding adaptation as an evolutionary mechanism that generates morphological diversification

    Population-Level Metrics of Trophic Structure Based on Stable Isotopes and Their Application to Invasion Ecology

    Get PDF
    Biological invasions are a significant driver of human-induced global change and many ecosystems sustain sympatric invaders. Interactions occurring among these invaders have important implications for ecosystem structure and functioning, yet they are poorly understood. Here we apply newly developed metrics derived from stable isotope data to provide quantitative measures of trophic diversity within populations or species. We then use these to test the hypothesis that sympatric invaders belonging to the same functional feeding group occupy a smaller isotopic niche than their allopatric counterparts. Two introduced, globally important, benthic omnivores, Louisiana swamp crayfish (Procambarus clarkii) and carp (Cyprinus carpio), are sympatric in Lake Naivasha, Kenya. We applied our metrics to an 8-year data set encompassing the establishment of carp in the lake. We found a strong asymmetric interaction between the two invasive populations, as indicated by inverse correlations between carp abundance and measures of crayfish trophic diversity. Lack of isotopic niche overlap between carp and crayfish in the majority of years indicated a predominantly indirect interaction. We suggest that carp-induced habitat alteration reduced the diversity of crayfish prey, resulting in a reduction in the dietary niche of crayfish. Stable isotopes provide an integrated signal of diet over space and time, offering an appropriate scale for the study of population niches, but few isotope studies have retained the often insightful information revealed by variability among individuals in isotope values. Our population metrics incorporate such variation, are robust to the vagaries of sample size and are a useful additional tool to reveal subtle dietary interactions among species. Although we have demonstrated their applicability specifically using a detailed temporal dataset of species invasion in a lake, they have a wide array of potential ecological applications

    Why Do Dolphins Carry Sponges?

    Get PDF
    Tool use is rare in wild animals, but of widespread interest because of its relationship to animal cognition, social learning and culture. Despite such attention, quantifying the costs and benefits of tool use has been difficult, largely because if tool use occurs, all population members typically exhibit the behavior. In Shark Bay, Australia, only a subset of the bottlenose dolphin population uses marine sponges as tools, providing an opportunity to assess both proximate and ultimate costs and benefits and document patterns of transmission. We compared sponge-carrying (sponger) females to non-sponge-carrying (non-sponger) females and show that spongers were more solitary, spent more time in deep water channel habitats, dived for longer durations, and devoted more time to foraging than non-spongers; and, even with these potential proximate costs, calving success of sponger females was not significantly different from non-spongers. We also show a clear female-bias in the ontogeny of sponging. With a solitary lifestyle, specialization, and high foraging demands, spongers used tools more than any non-human animal. We suggest that the ecological, social, and developmental mechanisms involved likely (1) help explain the high intrapopulation variation in female behaviour, (2) indicate tradeoffs (e.g., time allocation) between ecological and social factors and, (3) constrain the spread of this innovation to primarily vertical transmission

    Disparity Changes in 370 Ma Devonian Fossils: The Signature of Ecological Dynamics?

    Get PDF
    Early periods in Earth's history have seen a progressive increase in complexity of the ecosystems, but also dramatic crises decimating the biosphere. Such patterns are usually considered as large-scale changes among supra-specific groups, including morphological novelties, radiation, and extinctions. Nevertheless, in the same time, each species evolved by the way of micro-evolutionary processes, extended over millions of years into the evolution of lineages. How these two evolutionary scales interacted is a challenging issue because this requires bridging a gap between scales of observation and processes. The present study aims at transferring a typical macro-evolutionary approach, namely disparity analysis, to the study of fine-scale evolutionary variations in order to decipher what processes actually drove the dynamics of diversity at a micro-evolutionary level. The Late Frasnian to Late Famennian period was selected because it is punctuated by two major macro-evolutionary crises, as well as a progressive diversification of marine ecosystem. Disparity was estimated through this period on conodonts, tooth-like fossil remains of small eel-like predators that were part of the nektonic fauna. The study was focused on the emblematic genus of the period, Palmatolepis. Strikingly, both crises affected an already impoverished Palmatolepis disparity, increasing risks of random extinction. The major disparity signal rather emerged as a cycle of increase and decrease in disparity during the inter-crises period. The diversification shortly followed the first crisis and might correspond to an opportunistic occupation of empty ecological niche. The subsequent oriented shrinking in the morphospace occupation suggests that the ecological space available to Palmatolepis decreased through time, due to a combination of factors: deteriorating climate, expansion of competitors and predators. Disparity changes of Palmatolepis thus reflect changes in the structure of the ecological space itself, which was prone to evolve during this ancient period where modern ecosystems were progressively shaped

    Among-individual diet variation within a lake trout ecotype: lack of stability of niche use

    Get PDF
    In a polyphenic species, differences in resource use are expected among ecotypes, and homogeneity in resource use is expected within an ecotype. Yet, using a broad resource spectrum has been identified as a strategy for fishes living in unproductive northern environments, where food is patchily distributed and ephemeral. We investigated whether specialization of trophic resources by individuals occurred within the generalist piscivore ecotype of lake trout from Great Bear Lake, Canada, reflective of a form of diversity. Four distinct dietary patterns of resource use within this lake trout ecotype were detected from fatty acid composition, with some variation linked to spatial patterns within Great Bear Lake. Feeding habits of different groups within the ecotype were not associated with detectable morphological or genetic differentiation, suggesting that behavioral plasticity caused the trophic differences. A low level of genetic differentiation was detected between exceptionally large‐sized individuals and other piscivore individuals. We demonstrated that individual trophic specialization can occur within an ecotype inhabiting a geologically young system (8,000–10,000 yr BP), a lake that sustains high levels of phenotypic diversity of lake trout overall. The characterization of niche use among individuals, as done in this study, is necessary to understand the role that individual variation can play at the beginning of differentiation processes
    • …
    corecore