8,411 research outputs found
Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept
A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate
Correcting the z~8 Galaxy Luminosity Function for Gravitational Lensing Magnification Bias
We present a Bayesian framework to account for the magnification bias from
both strong and weak gravitational lensing in estimates of high-redshift galaxy
luminosity functions. We illustrate our method by estimating the UV
luminosity function using a sample of 97 Y-band dropouts (Lyman break galaxies)
found in the Brightest of Reionizing Galaxies (BoRG) survey and from the
literature. We find the luminosity function is well described by a Schechter
function with characteristic magnitude of ,
faint-end slope of , and number density of
. These
parameters are consistent within the uncertainties with those inferred from the
same sample without accounting for the magnification bias, demonstrating that
the effect is small for current surveys at , and cannot account for the
apparent overdensity of bright galaxies compared to a Schechter function found
recently by Bowler et al. (2014a,b) and Finkelstein et al. (2014). We estimate
that the probability of finding a strongly lensed source in our sample
is in the range depending on limiting magnitude. We identify one
strongly-lensed candidate and three cases of intermediate lensing in BoRG
(estimated magnification ) in addition to the previously known
candidate group-scale strong lens. Using a range of theoretical luminosity
functions we conclude that magnification bias will dominate wide field surveys
-- such as those planned for the Euclid and WFIRST missions -- especially at
. Magnification bias will need to be accounted for in order to derive
accurate estimates of high-redshift luminosity functions in these surveys and
to distinguish between galaxy formation models.Comment: Accepted for publication in ApJ. 20 pages, 13 figure
Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application
An axisymmetric version of the Dual Throat Nozzle concept with a variable expansion ratio has been studied to determine the impacts on thrust vectoring and nozzle performance. The nozzle design, applicable to a supersonic aircraft, was guided using the unsteady Reynolds-averaged Navier-Stokes computational fluid dynamics code, PAB3D. The axisymmetric Dual Throat Nozzle concept was tested statically in the Jet Exit Test Facility at the NASA Langley Research Center. The nozzle geometric design variables included circumferential span of injection, cavity length, cavity convergence angle, and nozzle expansion ratio for conditions corresponding to take-off and landing, mid climb and cruise. Internal nozzle performance and thrust vectoring performance was determined for nozzle pressure ratios up to 10 with secondary injection rates up to 10 percent of the primary flow rate. The 60 degree span of injection generally performed better than the 90 degree span of injection using an equivalent injection area and number of holes, in agreement with computational results. For injection rates less than 7 percent, thrust vector angle for the 60 degree span of injection was 1.5 to 2 degrees higher than the 90 degree span of injection. Decreasing cavity length improved thrust ratio and discharge coefficient, but decreased thrust vector angle and thrust vectoring efficiency. Increasing cavity convergence angle from 20 to 30 degrees increased thrust vector angle by 1 degree over the range of injection rates tested, but adversely affected system thrust ratio and discharge coefficient. The dual throat nozzle concept generated the best thrust vectoring performance with an expansion ratio of 1.0 (a cavity in between two equal minimum areas). The variable expansion ratio geometry did not provide the expected improvements in discharge coefficient and system thrust ratio throughout the flight envelope of typical a supersonic aircraft. At mid-climb and cruise conditions, the variable geometry design compromised thrust vector angle achieved, but some thrust vector control would be available, potentially for aircraft trim. The fixed area, expansion ratio of 1.0, Dual Throat Nozzle provided the best overall compromise for thrust vectoring and nozzle internal performance over the range of NPR tested compared to the variable geometry Dual Throat Nozzle
The occupation of a box as a toy model for the seismic cycle of a fault
We illustrate how a simple statistical model can describe the quasiperiodic
occurrence of large earthquakes. The model idealizes the loading of elastic
energy in a seismic fault by the stochastic filling of a box. The emptying of
the box after it is full is analogous to the generation of a large earthquake
in which the fault relaxes after having been loaded to its failure threshold.
The duration of the filling process is analogous to the seismic cycle, the time
interval between two successive large earthquakes in a particular fault. The
simplicity of the model enables us to derive the statistical distribution of
its seismic cycle. We use this distribution to fit the series of earthquakes
with magnitude around 6 that occurred at the Parkfield segment of the San
Andreas fault in California. Using this fit, we estimate the probability of the
next large earthquake at Parkfield and devise a simple forecasting strategy.Comment: Final version of the published paper, with an erratum and an
unpublished appendix with some proof
HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation
Historically, high energy physics computing has been performed on large
purpose-built computing systems. These began as single-site compute facilities,
but have evolved into the distributed computing grids used today. Recently,
there has been an exponential increase in the capacity and capability of
commercial clouds. Cloud resources are highly virtualized and intended to be
able to be flexibly deployed for a variety of computing tasks. There is a
growing nterest among the cloud providers to demonstrate the capability to
perform large-scale scientific computing. In this paper, we discuss results
from the CMS experiment using the Fermilab HEPCloud facility, which utilized
both local Fermilab resources and virtual machines in the Amazon Web Services
Elastic Compute Cloud. We discuss the planning, technical challenges, and
lessons learned involved in performing physics workflows on a large-scale set
of virtualized resources. In addition, we will discuss the economics and
operational efficiencies when executing workflows both in the cloud and on
dedicated resources.Comment: 15 pages, 9 figure
SCAMP:standardised, concentrated, additional macronutrients, parenteral nutrition in very preterm infants: a phase IV randomised, controlled exploratory study of macronutrient intake, growth and other aspects of neonatal care
<p>Abstract</p> <p>Background</p> <p>Infants born <29 weeks gestation are at high risk of neurocognitive disability. Early postnatal growth failure, particularly head growth, is an important and potentially reversible risk factor for impaired neurodevelopmental outcome. Inadequate nutrition is a major factor in this postnatal growth failure, optimal protein and calorie (macronutrient) intakes are rarely achieved, especially in the first week. Infants <29 weeks are dependent on parenteral nutrition for the bulk of their nutrient needs for the first 2-3 weeks of life to allow gut adaptation to milk digestion. The prescription, formulation and administration of neonatal parenteral nutrition is critical to achieving optimal protein and calorie intake but has received little scientific evaluation. Current neonatal parenteral nutrition regimens often rely on individualised prescription to manage the labile, unpredictable biochemical and metabolic control characteristic of the early neonatal period. Individualised prescription frequently fails to translate into optimal macronutrient delivery. We have previously shown that a standardised, concentrated neonatal parenteral nutrition regimen can optimise macronutrient intake.</p> <p>Methods</p> <p>We propose a single centre, randomised controlled exploratory trial of two standardised, concentrated neonatal parenteral nutrition regimens comparing a standard macronutrient content (maximum protein 2.8 g/kg/day; lipid 2.8 g/kg/day, dextrose 10%) with a higher macronutrient content (maximum protein 3.8 g/kg/day; lipid 3.8 g/kg/day, dextrose 12%) over the first 28 days of life. 150 infants 24-28 completed weeks gestation and birthweight <1200 g will be recruited. The primary outcome will be head growth velocity in the first 28 days of life. Secondary outcomes will include a) auxological data between birth and 36 weeks corrected gestational age b) actual macronutrient intake in first 28 days c) biomarkers of biochemical and metabolic tolerance d) infection biomarkers and other intravascular line complications e) incidence of major complications of prematurity including mortality f) neurodevelopmental outcome at 2 years corrected gestational age</p> <p>Trial registration</p> <p>Current controlled trials: <a href="http://www.controlled-trials.com/ISRCTN76597892">ISRCTN76597892</a>; EudraCT Number: 2008-008899-14</p
Recommended from our members
"Older Adults with ASD: The Consequences of Aging." Insights from a series of special interest group meetings held at the International Society for Autism Research 2016-2017
A special interest group (SIG) entitled "Older Adults with ASD: The Consequences of Aging" was held at the International Society for Autism Research (INSAR) annual meetings in 2016 and 2017. The SIG and subsequent meetings brought together, for the first time, international delegates who were members of the autistic community, researchers, practitioners and service providers. Based on aging autism research that is already underway in UK, Europe, Australia and North America, discussions focussed on conceptualising the parameters of aging when referring to autism, and the measures that are appropriate to use with older adults when considering diagnostic assessment, cognitive factors and quality of life in older age. Thus, the aim of this SIG was to progress the research agenda on current and future directions for autism research in the context of aging. A global issue on how to define 'aging' when referring to ASD was at the forefront of discussions. The ‘aging’ concept can in principle refer to all developmental transitions. However, in this paper we focus on the cognitive and physical changes that take place from mid-life onwards. Accordingly, it was agreed that aging and ASD research should focus on adults over the age of 50 years, given the high rates of co-occurring physical and mental health concerns and increased risk of premature death in some individuals. Moreover, very little is known about the cognitive change, care needs and outcomes of autistic adults beyond this age. Discussions on the topics of diagnostic and cognitive assessments, and of quality of life and well-being were explored through shared knowledge about which measures are currently being used and which background questions should be asked to obtain comprehensive and informative developmental and medical histories. Accordingly, a survey was completed by SIG delegates who were representatives of international research groups across four continents, and who are currently conducting studies with older autistic adults. Considerable overlap was identified across different research groups in measures of both autism and quality of life, which pointed to combining data and shared learnings as the logical next step. Regarding the background questions that were asked, the different research groups covered similar topics but the groups differed in the way these questions were formulated when working with autistic adults across a range of cognitive abilities. It became clear that continued input from individuals on the autism spectrum is important to ensure that questionnaires used in ongoing and future are accessible and understandable for people across the whole autistic spectrum, including those with limited verbal abilities
- …
