252 research outputs found

    Sublinear Higson corona and Lipschitz extensions

    Full text link
    The purpose of the paper is to characterize the dimension of sublinear Higson corona νL(X)\nu_L(X) of XX in terms of Lipschitz extensions of functions: Theorem: Suppose (X,d)(X,d) is a proper metric space. The dimension of the sublinear Higson corona νL(X)\nu_L(X) of XX is the smallest integer m0m\ge 0 with the following property: Any norm-preserving asymptotically Lipschitz function f ⁣:ARm+1f'\colon A\to \R^{m+1}, AXA\subset X, extends to a norm-preserving asymptotically Lipschitz function g ⁣:XRm+1g'\colon X\to \R^{m+1}. One should compare it to the result of Dranishnikov \cite{Dr1} who characterized the dimension of the Higson corona ν(X)\nu(X) of XX is the smallest integer n0n\ge 0 such that Rn+1\R^{n+1} is an absolute extensor of XX in the asymptotic category \AAA (that means any proper asymptotically Lipschitz function f ⁣:ARn+1f\colon A\to \R^{n+1}, AA closed in XX, extends to a proper asymptotically Lipschitz function f ⁣:XRn+1f'\colon X\to \R^{n+1}). \par In \cite{Dr1} Dranishnikov introduced the category \tilde \AAA whose objects are pointed proper metric spaces XX and morphisms are asymptotically Lipschitz functions f ⁣:XYf\colon X\to Y such that there are constants b,c>0b,c > 0 satisfying f(x)cxb|f(x)|\ge c\cdot |x|-b for all xXx\in X. We show dim(νL(X))n\dim(\nu_L(X))\leq n if and only if Rn+1\R^{n+1} is an absolute extensor of XX in the category \tilde\AAA. \par As an application we reprove the following result of Dranishnikov and Smith \cite{DRS}: Theorem: Suppose (X,d)(X,d) is a proper metric space of finite asymptotic Assouad-Nagata dimension \asdim_{AN}(X). If XX is cocompact and connected, then \asdim_{AN}(X) equals the dimension of the sublinear Higson corona νL(X)\nu_L(X) of XX.Comment: 13 page

    The thermal state and interior structure of Mars

    Get PDF
    ©2018. American Geophysical UnionThe present‐day thermal state, interior structure, composition, and rheology of Mars can be constrained by comparing the results of thermal history calculations with geophysical, petrological, and geological observations. Using the largest‐to‐date set of 3‐D thermal evolution models, we find that a limited set of models can satisfy all available constraints simultaneously. These models require a core radius strictly larger than 1,800 km, a crust with an average thickness between 48.8 and 87.1 km containing more than half of the planet's bulk abundance of heat producing elements, and a dry mantle rheology. A strong pressure dependence of the viscosity leads to the formation of prominent mantle plumes producing melt underneath Tharsis up to the present time. Heat flow and core size estimates derived from the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission will increase the set of constraining data and help to confine the range of admissible models.DFG, 280637173, FOR 2440: Materie im Inneren von Planeten - Hochdruck-, Planeten- und Plasmaphysi

    Compact maps and quasi-finite complexes

    Get PDF
    The simplest condition characterizing quasi-finite CW complexes KK is the implication XτhK    β(X)τKX\tau_h K\implies \beta(X)\tau K for all paracompact spaces XX. Here are the main results of the paper: Theorem: If {Ks}sS\{K_s\}_{s\in S} is a family of pointed quasi-finite complexes, then their wedge sSKs\bigvee\limits_{s\in S}K_s is quasi-finite. Theorem: If K1K_1 and K2K_2 are quasi-finite countable complexes, then their join K1K2K_1\ast K_2 is quasi-finite. Theorem: For every quasi-finite CW complex KK there is a family {Ks}sS\{K_s\}_{s\in S} of countable CW complexes such that sSKs\bigvee\limits_{s\in S} K_s is quasi-finite and is equivalent, over the class of paracompact spaces, to KK. Theorem: Two quasi-finite CW complexes KK and LL are equivalent over the class of paracompact spaces if and only if they are equivalent over the class of compact metric spaces. Quasi-finite CW complexes lead naturally to the concept of XτFX\tau {\mathcal F}, where F{\mathcal F} is a family of maps between CW complexes. We generalize some well-known results of extension theory using that concept.Comment: 20 page

    Initial results from the InSight mission on Mars

    Get PDF

    Deep space 2: The Mars Microprobe Mission

    Get PDF
    The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at similar to 190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and similar to 50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 1.0 cm scale layers

    Volcanic and Tectonic Constraints on the Evolution of Venus

    Get PDF
    Surface geologic features form a detailed record of Venus’ evolution. Venus displays a profusion of volcanic and tectonics features, including both familiar and exotic forms. One challenge to assessing the role of these features in Venus’ evolution is that there are too few impact craters to permit age dates for specific features or regions. Similarly, without surface water, erosion is limited and cannot be used to evaluate age. These same observations indicate Venus has, on average, a very young surface (150–1000 Ma), with the most recent surface deformation and volcanism largely preserved on the surface except where covered by limited impact ejecta. In contrast, most geologic activity on Mars, the Moon, and Mercury occurred in the 1st billion years. Earth’s geologic processes are almost all a result of plate tectonics. Venus’ lacks such a network of connected, large scale plates, leaving the nature of Venus’ dominant geodynamic process up for debate. In this review article, we describe Venus’ key volcanic and tectonic features, models for their origin, and possible links to evolution. We also present current knowledge of the composition and thickness of the crust, lithospheric thickness, and heat flow given their critical role in shaping surface geology and interior evolution. Given Venus’ hot lithosphere, abundant activity and potential analogues of continents, roll-back subduction, and microplates, it may provide insights into early Earth, prior to the onset of true plate tectonics. We explore similarities and differences between Venus and the Proterozoic or Archean Earth. Finally, we describe the future measurements needed to advance our understanding of volcanism, tectonism, and the evolution of Venus

    Using the inertia of spacecraft during landing to penetrate regoliths of the Solar System

    Get PDF
    The high inertia, i.e. high mass and low speed, of a landing spacecraft has the potential to drive a penetrometer into the subsurface without the need for a dedicated deployment mechanism, e.g., during Huygens landing on Titan. Such a method could complement focused subsurface exploration missions, particularly in the low gravity environments of comets and asteroids, as it is conducive to conducting surveys and to the deployment of sensor networks. We make full-scale laboratory simulations of a landing spacecraft with a penetrometer attached to its base plate. The tip design is based on that used in terrestrial Cone Penetration Testing (CPT) with a large enough shaft diameter to house instruments for analysing pristine subsurface material. Penetrometer measurements are made in a variety of regolith analogue materials and target compaction states. For comparison a copy of the ACC-E penetrometer from the Huygens mission to Titan is used. A test rig at the Open University is used and is operated over a range of speeds from 0.9 to 3 m s−1 and under two gravitational accelerations. The penetrometer was found to be sensitive to the target’s compaction state with a high degree of repeatability. The penetrometer measurements also produced unique pressure profile shapes for each material. Measurements in limestone powder produced an exponential increase in pressure with depth possibly due to increasing compaction with depth. Measurements in sand produced an almost linear increase in pressure with depth. Iron powder produced significantly higher pressures than sand presumably due to the rough surface of the grains increasing the grain-grain friction. Impacts into foamglas produced with both ACC-E and the large penetrometer produced an initial increase in pressure followed by a leveling off as expected in a consolidated material. Measurements in sand suggest that the pressure on the tip is not significantly dependent on speed over the range tested, which suggests bearing strength equations could be applied to impact penetrometry in sand-like regoliths. In terms of performance we find the inertia of a landing spacecraft, with a mass of 100 kg, is adequate to penetrate regoliths expected on the surface of Solar System bodies. Limestone powder, an analogue for a dusty surface, offered very little resistance allowing full penetration of the target container. Both iron powder, representing a stronger coarse grained regolith, and foamglas, representing a consolidated comet crust, could be penetrated to similar depths of around two to three tip diameters. Speed tests suggest a linear dependence of penetration depth on impact speed

    Efecto del sustrato carbonoso en la nucleación de nanopartículas de Sn para ánodos en baterías de ion-litio : Experimentos y modelado computacional

    Get PDF
    En este trabajo hemos estudiado la nucleación de nanopartículas de estaño usando tres diferentes materiales carbonosos como soporte, para obtener los correspondientes compósitos Sn/C. Los materiales carbonosos estudiados fueron: escamas de grafito comercial, nanotubos de carbono (de pared múltiple y 100 nm diámetro) y carbono amorfo (super P ®). La síntesis de las nanopartículas metálicas fue realizada utilizando el método de reducción química a partir de SnCl2 y NaBH4. Los materiales resultantes fueron caracterizados estructuralmente mediante microscopía electrónica de transmisión (TEM) y de barrido (SEM), así como también utilizando la técnica de EDS (“Energy Dispersive Scanning”) de la cual se puede obtener la composición de los compósitos de manera semi cuantitativa. El área superficial específica para los materiales compósitos obtenidos fue determinada mediante la adsorción de N2 y utilizando la teoría BET. Las propiedades electróquímicas de los materiales sintetizados fueron caracterizadas utilizando las técnicas de voltametría cíclica y espectroscopía de impedancia. Se evaluó el desempeño de estos compósitos como ánodos en baterías de ion-litio. Se realizaron estudios de carga y descarga para determinar la capacidad y ciclabilidad de los mismos. De esta manera fue posible determinar que todos los compósitos Sn/C obtenidos presentan un mejor desempeño, en cuanto a capacidad, que el ánodo de grafito que se utiliza comercialmente. Se encontró que el sustrato carbonoso tiene un efecto importante en el desempeño del electrodo, resultando el de mejores propiedades el compósito obtenido a partir de carbono amorfo, lo cual está relacionado con las características estructurales del soporte carbonoso y la correspondiente influencia en el proceso de nucleación y crecimiento de las nanopartículas metálicas. Se modeló computacionalmente el sistema bajo estudio con el objeto de racionalizar las tendencias observadas experimentalmente. Se determinaron los valores para la energía de adsorción de un solo átomo de Sn sobre los distintos soportes carbonosos. Estos valores pueden usarse como referencia en relación con la fuerza impulsora termodinámica para la nucleación de Sn, y resultaron ser el factor clave para comprender las diferencias entre los diferentes materiales carbonosos estudiados.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
    corecore