94 research outputs found

    The histone deacetylase inhibitor valproic acid alters growth properties of renal cell carcinoma in vitro and in vivo

    Get PDF
    Histone deacetylase (HDAC) inhibitors represent a promising class of antineoplastic agents which affect tumour growth, differentiation and invasion. The effects of the HDAC inhibitor valproic acid (VPA) were tested in vitro and in vivo on pre-clinical renal cell carcinoma (RCC) models. Caki-1, KTC-26 or A498 cells were treated with various concentrations of VPA during in vitro cell proliferation 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays and to evaluate cell cycle manipulation. In vivo tumour growth was conducted in subcutaneous xenograft mouse models. The anti-tumoural potential of VPA combined with low-dosed interferon-α (IFN-α) was also investigated. VPA significantly and dose-dependently up-regulated histones H3 and H4 acetylation and caused growth arrest in RCC cells. VPA altered cell cycle regulating proteins, in particular CDK2, cyclin B, cyclin D3, p21 and Rb. In vivo, VPA significantly inhibited the growth of Caki-1 in subcutaneous xenografts, accompanied by a strong accumulation of p21 and bax in tissue specimens of VPA-treated animals. VPA–IFN-α combination markedly enhanced the effects of VPA monotherapy on RCC proliferation in vitro, but did not further enhance the anti-tumoural potential of VPA in vivo. VPA was found to have profound effects on RCC cell growth, lending support to the initiation of clinical testing of VPA for treating advanced RCC

    Downregulation of Homologous Recombination DNA Repair Genes by HDAC Inhibition in Prostate Cancer Is Mediated through the E2F1 Transcription Factor

    Get PDF
    Histone deacetylase inhibitors (HDACis) re-express silenced tumor suppressor genes and are currently undergoing clinical trials. Although HDACis have been known to induce gene expression, an equal number of genes are downregulated upon HDAC inhibition. The mechanism behind this downregulation remains unclear. Here we provide evidence that several DNA repair genes are downregulated by HDAC inhibition and provide a mechanism involving the E2F1 transcription factor in the process.Applying Analysis of Functional Annotation (AFA) on microarray data of prostate cancer cells treated with HDACis, we found a number of genes of the DNA damage response and repair pathways are downregulated by HDACis. AFA revealed enrichment of homologous recombination (HR) DNA repair genes of the BRCA1 pathway, as well as genes regulated by the E2F1 transcription factor. Prostate cancer cells demonstrated a decreased DNA repair capacity and an increased sensitization to chemical- and radio-DNA damaging agents upon HDAC inhibition. Recruitment of key HR repair proteins to the site of DNA damage, as well as HR repair capacity was compromised upon HDACi treatment. Based on our AFA data, we hypothesized that the E2F transcription factors may play a role in the downregulation of key repair genes upon HDAC inhibition in prostate cancer cells. ChIP analysis and luciferase assays reveal that the downregulation of key repair genes is mediated through decreased recruitment of the E2F1 transcription factor and not through active repression by repressive E2Fs.Our study indicates that several genes in the DNA repair pathway are affected upon HDAC inhibition. Downregulation of the repair genes is on account of a decrease in amount and promoter recruitment of the E2F1 transcription factor. Since HDAC inhibition affects several pathways that could potentially have an impact on DNA repair, compromised DNA repair upon HDAC inhibition could also be attributed to several other pathways besides the ones investigated in this study. However, our study does provide insights into the mechanism that governs downregulation of HR DNA repair genes upon HDAC inhibition, which can lead to rationale usage of HDACis in the clinics

    Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries

    Get PDF
    The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity

    Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe

    Get PDF
    Tuberculosis (TB) was once a major killer in Europe, but it is unclear how the strains and patterns of infection at 'peak TB' relate to what we see today. Here we describe 14 genome sequences of M. tuberculosis, representing 12 distinct genotypes, obtained from human remains from eighteenth-century Hungary using metagenomics. All our historic genotypes belong to M. tuberculosis Lineage 4. Bayesian phylogenetic dating, based on samples with well-documented dates, places the most recent common ancestor of this lineage in the late Roman period. We find that most bodies yielded more than one M. tuberculosis genotype and we document an intimate epidemiological link between infections in two long-dead individuals. Our results suggest that metagenomic approaches usefully inform detection and characterization of historical and contemporary infections

    Pre-processing Agilent microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pre-processing methods for two-sample long oligonucleotide arrays, specifically the Agilent technology, have not been extensively studied. The goal of this study is to quantify some of the sources of error that affect measurement of expression using Agilent arrays and to compare Agilent's Feature Extraction software with pre-processing methods that have become the standard for normalization of cDNA arrays. These include log transformation followed by loess normalization with or without background subtraction and often a between array scale normalization procedure. The larger goal is to define best study design and pre-processing practices for Agilent arrays, and we offer some suggestions.</p> <p>Results</p> <p>Simple loess normalization without background subtraction produced the lowest variability. However, without background subtraction, fold changes were biased towards zero, particularly at low intensities. ROC analysis of a spike-in experiment showed that differentially expressed genes are most reliably detected when background is not subtracted. Loess normalization and no background subtraction yielded an AUC of 99.7% compared with 88.8% for Agilent processed fold changes. All methods performed well when error was taken into account by t- or z-statistics, AUCs ≥ 99.8%. A substantial proportion of genes showed dye effects, 43% (99%<it>CI </it>: 39%, 47%). However, these effects were generally small regardless of the pre-processing method.</p> <p>Conclusion</p> <p>Simple loess normalization without background subtraction resulted in low variance fold changes that more reliably ranked gene expression than the other methods. While t-statistics and other measures that take variation into account, including Agilent's z-statistic, can also be used to reliably select differentially expressed genes, fold changes are a standard measure of differential expression for exploratory work, cross platform comparison, and biological interpretation and can not be entirely replaced. Although dye effects are small for most genes, many array features are affected. Therefore, an experimental design that incorporates dye swaps or a common reference could be valuable.</p

    Frequency of Fabry disease in male and female haemodialysis patients in Spain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fabry disease (FD), an X-linked lysosomal storage disorder, is caused by a reduced activity of the lysosomal enzyme α-galactosidase A. The disorder ultimately leads to organ damage (including renal failure) in males and females. However, heterozygous females usually present a milder phenotype with a later onset and a slower progression.</p> <p>Methods</p> <p>A combined enzymatic and genetic strategy was used, measuring the activity of α-galactosidase A and genotyping the α-galactosidase A gene (<it>GLA</it>) in dried blood samples (DBS) of 911 patients undergoing haemodialysis in centers across Spain.</p> <p>Results</p> <p><it>GLA </it>alterations were found in seven unrelated patients (4 males and 3 females). Two novel mutations (p.Gly346AlafsX347 and p.Val199GlyfsX203) were identified as well as a previously described mutation, R118C. The R118C mutation was present in 60% of unrelated patients with <it>GLA </it>causal mutations. The D313Y alteration, considered by some authors as a pseudo-deficiency allele, was also found in two out of seven patients.</p> <p>Conclusions</p> <p>Excluding the controversial D313Y alteration, FD presents a frequency of one in 182 individuals (0.55%) within this population of males and females undergoing haemodialysis. Moreover, our findings suggest that a number of patients with unexplained and atypical symptoms of renal disease may have FD. Screening programmes for FD in populations of individuals presenting severe kidney dysfunction, cardiac alterations or cerebrovascular disease may lead to the diagnosis of FD in those patients, the study of their families and eventually the implementation of a specific therapy.</p

    The N-Myc Down Regulated Gene1 (NDRG1) Is a Rab4a Effector Involved in Vesicular Recycling of E-Cadherin

    Get PDF
    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein

    The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat

    Get PDF
    PURPOSE: Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene. Migalastat, a pharmacological chaperone, binds to specific mutant forms of α-galactosidase A to restore lysosomal activity. METHODS: A pharmacogenetic assay was used to identify the α-galactosidase A mutant forms amenable to migalastat. Six hundred Fabry disease-causing mutations were expressed in HEK-293 (HEK) cells; increases in α-galactosidase A activity were measured by a good laboratory practice (GLP)-validated assay (GLP HEK/Migalastat Amenability Assay). The predictive value of the assay was assessed based on pharmacodynamic responses to migalastat in phase II and III clinical studies. RESULTS: Comparison of the GLP HEK assay results in in vivo white blood cell α-galactosidase A responses to migalastat in male patients showed high sensitivity, specificity, and positive and negative predictive values (≥0.875). GLP HEK assay results were also predictive of decreases in kidney globotriaosylceramide in males and plasma globotriaosylsphingosine in males and females. The clinical study subset of amenable mutations (n = 51) was representative of all 268 amenable mutations identified by the GLP HEK assay. CONCLUSION: The GLP HEK assay is a clinically validated method of identifying male and female Fabry patients for treatment with migalastat
    • …
    corecore