16 research outputs found
Molecular architecture of the Spire–actin nucleus and its implication for actin filament assembly
The Spire protein is a multifunctional regulator of actin assembly. We studied the structures and properties of Spire–actin complexes by X-ray scattering, X-ray crystallography, total internal reflection fluorescence microscopy, and actin polymerization assays. We show that Spire–actin complexes in solution assume a unique, longitudinal-like shape, in which Wiskott–Aldrich syndrome protein homology 2 domains (WH2), in an extended configuration, line up actins along the long axis of the core of the Spire–actin particle. In the complex, the kinase noncatalytic C-lobe domain is positioned at the side of the first N-terminal Spire–actin module. In addition, we find that preformed, isolated Spire–actin complexes are very efficient nucleators of polymerization and afterward dissociate from the growing filament. However, under certain conditions, all Spire constructs—even a single WH2 repeat—sequester actin and disrupt existing filaments. This molecular and structural mechanism of actin polymerization by Spire should apply to other actin-binding proteins that contain WH2 domains in tandem
Complementation of Cold Shock Proteins by Translation Initiation Factor IF1 In Vivo
The cold shock response in both Escherichia coli and Bacillus subtilis is induced by an abrupt downshift in growth temperature and leads to a dramatic increase in the production of a homologous class of small, often highly acidic cold shock proteins. This protein family is the prototype of the cold shock domain (CSD) that is conserved from bacteria to humans. For B. subtilis it has been shown that at least one of the three resident cold shock proteins (CspB to D) is essential under optimal growth conditions as well as during cold shock. Analysis of the B. subtilis cspB cspC double deletion mutant revealed that removal of these csp genes results in pleiotropic alteration of protein synthesis, cell lysis during the entry of stationary growth phase, and the inability to differentiate into endospores. We show here that heterologous expression of the translation initiation factor IF1 from E. coli in a B. subtilis cspB cspC double deletion strain is able to cure both the growth and the sporulation defects observed for this mutant, suggesting that IF1 and cold shock proteins have at least in part overlapping cellular function(s). Two of the possible explanation models are discussed
Microsecond folding of the cold shock protein measured by a pressure-jump technique
A pressure-jump apparatus was employed in investigating the kinetics of protein unfolding and refolding. In the reaction cell, the pressure can be increased or decreased by 100-160 bar within 50-100 mu s and then held constant. Thus, unfolding and refolding reactions in the time range from 70 mu s to 70 s can be followed with this technique. Measurements are possible in the transition regions of thermally or denaturant-induced folding in a wide range of temperatures and solvent conditions. We used this pressure-jump method to determine the temperature dependence of the rate constants of unfolding and refolding of the cold shock protein of Bacillus subtilis and of three variants thereof with Phe --> Ala substitutions in the central beta-sheet region. For all variants, the change in heat capacity occurred in refolding between the unfolded and activated states, suggesting that the overall native-like character of the activated state of folding was not changed by the deletion of individual Phe side chains. The Phe27Ala mutation affected the rate of unfolding only; the Phe15Ala and Phe17Ala mutations changed the kinetics of both unfolding and refolding. Although the activated state of folding of the cold shock protein is overall native-like, individual side chains are still in a non-native environment
Solution Strucure of the Active Domain of Tissue Inhitor of Metalloprotrinases.2.A new Member of the OB Fold Protein Family
Homonuclear two-dimensional and three-dimensional H-1 nuclear magnetic resonance spectroscopy has been used to obtain essentially complete sequence-specific assignments for 123 of the 127 amino acid residues present in the truncated form of tissue inhibitor of metalloproteinases-2 (Delta TIMP-2), the active N-terminal domain of the protein. Analysis of the through-space nuclear Overhauser effect data obtained for Delta TIMP-2 allowed determination of both the secondary structure of the domain and also a low-resolution tertiary structure defining the protein backbone topology. The protein contains a five-stranded antiparallel beta-sheet that is rolled over on itself to form a closed beta-barrel, and two short helices which pack close to one another on the same barrel face. A comparison of the Delta TIMP-2 structure with other known protein folds reveals that the beta-barrel topology is homologous to that seen in proteins of the oligosaccharide/oligonucleotide binding (OB) fold family. The common structural features include the number of beta-strands and their arrangement, the beta-barrel shear number, an interstrand hydrogen bond network, the packing of the hydrophobic core, and a conserved beta-bulge. Superpositions of the beta-barrels from Delta TIMP-2 and two previously known members of the OB protein fold family (staphylococcal nuclease and Escherichia coil heat-labile enterotoxin) confirmed the similarity in beta-barrel topology. The three-dimensional structure of Delta TIMP-2 has allowed a more detailed interpretation than was previously possible of the functional significance of available protein sequence and site-directed mutagenesis data for the TIMP family. Furthermore, the structure has revealed conserved surface regions of potential functional importance