48 research outputs found

    An observing system for the collection of fishery and oceanographic data

    Get PDF
    Fishery Observing System (FOS) was developed as a first and basic step towards fish stock abundance nowcasting/forecasting within the framework of the EU research program Mediterranean Forecasting System: Toward an Environmental Prediction (MFSTEP). The study of the relationship between abundance and environmental parameters also represents a crucial point towards forecasting. Eight fishing vessels were progressively equipped with FOS instrumentation to collect fishery and oceanographic data. The vessels belonged to different harbours of the Central and Northern Adriatic Sea. For this pilot application, anchovy (<I>Engraulis encrasicolus</I>, L.) was chosen as the target species. Geo-referenced catch data, associated with in-situ temperature and depth, were the FOS products but other parameters were associated with catch data as well. MFSTEP numerical circulation models provide many of these data. In particular, salinity was extracted from re-analysis data of numerical circulation models. Satellite-derived sea surface temperature (SST) and chlorophyll were also used as independent variables. Catch and effort data were used to estimate an abundance index (CPUE – Catch per Unit of Effort). Considering that catch records were gathered by different fishing vessels with different technical characteristics and operating on different fish densities, a standardized value of CPUE was calculated. A spatial and temporal average CPUE map was obtained together with a monthly mean time series in order to characterise the variability of anchovy abundance during the period of observation (October 2003–August 2005). In order to study the relationship between abundance and oceanographic parameters, Generalized Additive Models (GAM) were used. Preliminary results revealed a complex scenario: the southern sector of the domain is characterised by a stronger relationship than the central and northern sector where the interactions between the environment and the anchovy distribution are hidden by a higher percentage of variability within the system which is still unexplained. <br><br> GAM analysis showed that increasing the number of explanatory variables also increased the portion of variance explained by the model. Data exchange and interdisciplinary efforts will therefore be crucial for the success of this research activity

    Whiting (Merlangius merlangus) Grows Slower and Smaller in the Adriatic Sea: New Insights from a Comparison of Two Populations with a Time Interval of 30 Years

    Get PDF
    Nowadays, overexploitation and climate change are among the major threats to fish production all over the world. In this study, we focused our attention on the Adriatic Sea (AS), a shallow semi-enclosed sub-basin showing the highest exploitation level and warming trend over the last decades within the Mediterranean Sea. We investigated the life history traits and population dynamics of the cold-water species whiting (Merlangius merlangus, Gadidae) 30 years apart, which is one of the main commercial species in the Northern AS. The AS represents its southern limit of distribution, in accordance with the thermal preference of this cold-water species. Fish samples were collected monthly using a commercial bottom trawl within the periods 1990–1991 and 2020–2021. The historical comparison highlighted a recent reduction in large specimens (>25 cm total length, TL), which was not associated with trunked age structures, therefore indicating a decrease in growth performance over a period of 30 years (L∞90–91 = 29.5 cm TL; L∞20–21 = 22.8 cm TL). The current size at first sexual maturity was achieved within the first year of life, at around 16 cm TL for males and 17 cm TL for females. In the AS, whiting spawns in batches from December to March, showing a reproductive investment (gonadosomatic index) one order of magnitude higher in females than in males. Potential fecundity (F) ranged from 46,144 to 424,298, with it being heavily dependent on fish size. We hypothesize that the decreased growth performance might be related to a metabolic constraint, possibly related to the increased temperature and its consequences. Moreover, considering the detrimental effects of size reduction on reproductive potential, these findings suggest a potential endangerment situation for the long-term maintenance of whiting and cold-related species in the AS, which should be accounted for in setting management strategies

    Koriơtenje povlačne podvodne kamere za procjene ơkampa, hlapića i morskog pera u Jadranskom moru

    Get PDF
    Norway lobster, Nephrops norvegicus, is of great commercial importance throughout the NE Atlantic and Mediterranean, where it lives in burrows within muddy sediments. In several European countries it is assessed by means of towed underwater TV techniques. These are particularly suited to N. norvegicus because, for a number of reasons, the application of common fishery-dependent stock-assessment methods is not thorough for this species. The TV-based methodology relies on the fact that a known surface area of seabed is visually assessed and the number of N. norvegicus burrows, whose features are distinct, can be counted and their inhabitants quantified. It follows that, in theory, the same can be done for other organisms or key ecological features which appear on the footage. This study reports the results of the underwater television surveys (2009 and 2010) carried out jointly by Italy and Croatia in the Pomo/Jabuka pits, an area of the Adriatic Sea important for its N. norvegicus fishery and its hake nursery grounds. The obtained footage allowed quantification of the density of N. norvegicus in the area and the acquisition of estimates of the abundances of the squat lobster, Munida rutllanti and the sea pen Funiculina quadrangularis. The concurrent quantification of trawling activity from the footage has allowed us to place our results in the context of an ecosystem approach to fisheries management.Ć kamp ( Nephrops norvegicus ) je izuzetno vaĆŸna gospodarska vrsta koja obitava u rupama u muljevitom sedimentu diljem sjeverno-istočnog Atlantika i Mediterana. Obzirom da uobičajene metode procjene bioloĆĄkih resursa koje se zasnivaju na ribolovu nisu u potpunosti pogodne za ovu vrstu, nekoliko Europskih zemalja procjene populacije ĆĄkampa obavlja koriĆĄtenjem povlačne podvodne kamere. Ova metodologija bazira se na činjenici da ĆĄkamp u sedimentu iskapa rupe karakterističnog izgleda koje se determiniraju i prebrojavaju vizualnim pregledom snimke dobivene povlačenjem podvodne kamere preko određene povrĆĄine morskog dna. Teoretski, ova metodologija se moĆŸe primijeniti i za procjene drugih vrsta ili ekoloĆĄkih parametara koji su zabiljeĆŸeni na snimkama. Ova studija iznosi rezultate istraĆŸivanja podvodnom kamerom (2009. i 2010. godine) koje su zajednički proveli Italija i Hrvatska na području Jabučke kotline u Jadranskom moru. Ovo područje koje se intenzivno gospodarski iskoriĆĄtava značajno je kao glavno mrijestiliĆĄte i rastiliĆĄte većeg broja pridnenih vrsta, posebno ĆĄkampa i oslića ( Merluccius merluccius ) Na osnovu dobivenih snimki izrađena je procjena brojnosti i biomase ĆĄkampa, kao i procjena brojnosti hlapića ( Munida rutllanti ) i morskog pera ( Funiculina quadrangularis ). Istodobna procjena tragova koćarenja zabiljeĆŸenih na snimkama omogućila nam je da ove rezultate stavimo u kontekst ekosustavnog pristupa gospodarenju bioloĆĄkih resursa mora

    Understanding the Dynamics of Ancillary Pelagic Species in the Adriatic Sea

    Get PDF
    The status of fishery resources in the Mediterranean Sea is critical: most of the fish and shellfish stocks are in overexploitation and only half of them are routinely assessed. This manuscript presents the use of Surplus Production Models (SPMs) as a valid option to increase the number of assessed stocks, with specific attention to the Adriatic basin. Particularly, the stock of European sprat (Sprattus sprattus), Mediterranean horse mackerel (Trachurus mediterraneus), and Atlantic horse mackerel (Trachurus trachurus) living in the Adriatic Sea have been evaluated comparing three SPMs: Catch Maximum Sustainable Yields (CMSY), Stochastic surplus Production model in Continuous Time (SPiCT), and Abundance Maximum Sustainable Yields (AMSY). The different approaches present some variations; however, they generally agree on describing all the stocks close to the reference values for both biomass and fishing mortality in the most recent year. For the European sprat, AMSY results are the most robust model for this species’ survey data allow depicting a clearer picture of the history of this stock. Indeed, for the horse mackerel species, CMSY or SPiCT results are the preferred models, since for these species landings are not negligible. Notwithstanding, age-structured assessments remain the most powerful approach for evaluating the status of resources, but SPMs have proved to be a powerful tool in a data-limited context

    Koriơtenje povlačne podvodne kamere za procjene ơkampa, hlapića i morskog pera u Jadranskom moru

    Get PDF
    Norway lobster, Nephrops norvegicus, is of great commercial importance throughout the NE Atlantic and Mediterranean, where it lives in burrows within muddy sediments. In several European countries it is assessed by means of towed underwater TV techniques. These are particularly suited to N. norvegicus because, for a number of reasons, the application of common fishery-dependent stock-assessment methods is not thorough for this species. The TV-based methodology relies on the fact that a known surface area of seabed is visually assessed and the number of N. norvegicus burrows, whose features are distinct, can be counted and their inhabitants quantified. It follows that, in theory, the same can be done for other organisms or key ecological features which appear on the footage. This study reports the results of the underwater television surveys (2009 and 2010) carried out jointly by Italy and Croatia in the Pomo/Jabuka pits, an area of the Adriatic Sea important for its N. norvegicus fishery and its hake nursery grounds. The obtained footage allowed quantification of the density of N. norvegicus in the area and the acquisition of estimates of the abundances of the squat lobster, Munida rutllanti and the sea pen Funiculina quadrangularis. The concurrent quantification of trawling activity from the footage has allowed us to place our results in the context of an ecosystem approach to fisheries management.Ć kamp ( Nephrops norvegicus ) je izuzetno vaĆŸna gospodarska vrsta koja obitava u rupama u muljevitom sedimentu diljem sjeverno-istočnog Atlantika i Mediterana. Obzirom da uobičajene metode procjene bioloĆĄkih resursa koje se zasnivaju na ribolovu nisu u potpunosti pogodne za ovu vrstu, nekoliko Europskih zemalja procjene populacije ĆĄkampa obavlja koriĆĄtenjem povlačne podvodne kamere. Ova metodologija bazira se na činjenici da ĆĄkamp u sedimentu iskapa rupe karakterističnog izgleda koje se determiniraju i prebrojavaju vizualnim pregledom snimke dobivene povlačenjem podvodne kamere preko određene povrĆĄine morskog dna. Teoretski, ova metodologija se moĆŸe primijeniti i za procjene drugih vrsta ili ekoloĆĄkih parametara koji su zabiljeĆŸeni na snimkama. Ova studija iznosi rezultate istraĆŸivanja podvodnom kamerom (2009. i 2010. godine) koje su zajednički proveli Italija i Hrvatska na području Jabučke kotline u Jadranskom moru. Ovo područje koje se intenzivno gospodarski iskoriĆĄtava značajno je kao glavno mrijestiliĆĄte i rastiliĆĄte većeg broja pridnenih vrsta, posebno ĆĄkampa i oslića ( Merluccius merluccius ) Na osnovu dobivenih snimki izrađena je procjena brojnosti i biomase ĆĄkampa, kao i procjena brojnosti hlapića ( Munida rutllanti ) i morskog pera ( Funiculina quadrangularis ). Istodobna procjena tragova koćarenja zabiljeĆŸenih na snimkama omogućila nam je da ove rezultate stavimo u kontekst ekosustavnog pristupa gospodarenju bioloĆĄkih resursa mora

    Sublethal toxicant effects with dynamic energy budget theory: model formulation

    Get PDF
    We develop and test a general modeling framework to describe the sublethal effects of pollutants by adding toxicity modules to an established dynamic energy budget (DEB) model. The DEB model describes the rates of energy acquisition and expenditure by individual organisms; the toxicity modules describe how toxicants affect these rates by changing the value of one or more DEB parameters, notably the parameters quantifying the rates of feeding and maintenance. We investigate four toxicity modules that assume: (1) effects on feeding only; (2) effects on maintenance only; (3) effects on feeding and maintenance with similar values for the toxicity parameters; and (4) effects on feeding and maintenance with different values for the toxicity parameters. We test the toxicity modules by fitting each to published data on feeding, respiration, growth and reproduction. Among the pollutants tested are metals (mercury and copper) and various organic compounds (chlorophenols, toluene, polycyclic aromatic hydrocarbons, tetradifon and pyridine); organisms include mussels, oysters, earthworms, water fleas and zebrafish. In most cases, the data sets could be adequately described with any of the toxicity modules, and no single module gave superior fits to all data sets. We therefore propose that for many applications, it is reasonable to use the most general and parameter sparse module, i.e. module 3 that assumes similar effects on feeding and maintenance, as a default. For one example (water fleas), we use parameter estimates to calculate the impact of food availability and toxicant levels on the long term population growth rate

    The Mediterranean fishery management: A call for shifting the current paradigm from duplication to synergy

    Get PDF
    Independence of science and best available science are fundamental pillars of the UN-FAO code of conduct for responsible fisheries and are also applied to the European Union (EU) Common Fishery Policy (CFP), with the overarching objective being the sustainable exploitation of the fisheries resources. CFP is developed by DG MARE, the department of the European Commission responsible for EU policy on maritime affairs and fisheries, which has the Scientific, Technical and Economic Committee for Fisheries (STECF) as consultant body. In the Mediterranean and Black Sea, the General Fisheries Commission for the Mediterranean (FAO-GFCM), with its own Scientific Advisory Committee on Fisheries (GFCM-SAC), plays a critical role in fisheries governance, having the authority to adopt binding recommendations for fisheries conservation and management. During the last years, advice on the status of the main stocks in the Mediterranean and Black Sea has been provided both by GFCM-SAC and EU-STECF, often without a clear coordination and a lack of shared rules and practices. This has led in the past to: i) duplications of the advice on the status of the stocks thus adding confusion in the management process and, ii) a continuous managers’ interference in the scientific process by DG MARE officials hindering its transparency and independence. Thus, it is imperative that this stalemate is rapidly resolved and that the free role of science in Mediterranean fisheries assessment and management is urgently restored to assure the sustainable exploitation of Mediterranean marine resources in the future.En prens

    The Mediterranean Sea Regime Shift at the End of the 1980s, and Intriguing Parallelisms with Other European Basins

    Get PDF
    Background: Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. Principal Findings: In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. Conclusions: Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key for distinguishing local (i.e., basin) anthropogenic drivers, such as eutrophication or fishing, from larger scale (hemispheric) climate drivers
    corecore