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Abstract. Fishery Observing System (FOS) was developed
as a first and basic step towards fish stock abundance now-
casting/forecasting within the framework of the EU research
program Mediterranean Forecasting System: Toward an En-
vironmental Prediction (MFSTEP). The study of the relation-
ship between abundance and environmental parameters also
represents a crucial point towards forecasting. Eight fishing
vessels were progressively equipped with FOS instrumen-
tation to collect fishery and oceanographic data. The ves-
sels belonged to different harbours of the Central and North-
ern Adriatic Sea. For this pilot application, anchovy (En-
graulis encrasicolus, L.) was chosen as the target species.
Geo-referenced catch data, associated with in-situ tempera-
ture and depth, were the FOS products but other parameters
were associated with catch data as well. MFSTEP numerical
circulation models provide many of these data. In particu-
lar, salinity was extracted from re-analysis data of numeri-
cal circulation models. Satellite-derived sea surface temper-
ature (SST) and chlorophyll were also used as independent
variables. Catch and effort data were used to estimate an
abundance index (CPUE – Catch per Unit of Effort). Con-
sidering that catch records were gathered by different fishing
vessels with different technical characteristics and operating
on different fish densities, a standardized value of CPUE was
calculated. A spatial and temporal average CPUE map was
obtained together with a monthly mean time series in order to
characterise the variability of anchovy abundance during the
period of observation (October 2003–August 2005). In or-
der to study the relationship between abundance and oceano-
graphic parameters, Generalized Additive Models (GAM)
were used. Preliminary results revealed a complex sce-
nario: the southern sector of the domain is characterised by
a stronger relationship than the central and northern sector
where the interactions between the environment and the an-
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chovy distribution are hidden by a higher percentage of vari-
ability within the system which is still unexplained.

GAM analysis showed that increasing the number of ex-
planatory variables also increased the portion of variance ex-
plained by the model. Data exchange and interdisciplinary
efforts will therefore be crucial for the success of this re-
search activity.

1 Introduction

The analysis of the relationships between environmental con-
ditions and the distribution of fish stocks is a complex mat-
ter. Many studies have pointed out how the environment
and its variability can influence recruitment and fish distribu-
tion (Cushing, 1996; O’Brien et al., 2000; Attrill and Power,
2002; Chavez et al., 2003). Although fishing effort has grown
in the recent past and is currently increasing, there is evi-
dence that climate and environmental variability could deter-
mine large fluctuations in fish stocks. To add more complex-
ity, the state of relationships between climate/environment
and stocks could not be conclusive (Mann, 1993): it looks
like they persist for one or two decades to then evolve to
another state as consequence of the changing environmental
conditions (Klyashtorin, 2001).

Realistic estimates regarding how fish stock abundance
changes in time and space are not easy to obtain. Acous-
tic surveys (Swartzman et al., 1992; Daskalov, 1999; Hedger
et al., 2004) are the main experimental method used to col-
lect information about stock abundance of small pelagic fish;
also, information regarding landings can be of help in this
evaluation (Denis et al., 2002). On the other hand, tempo-
ral coverage of survey data is not appropriate because it is
not always possible to carry out surveys regularly. In ad-
dition, surveys do not cover the spatial extent of the stock
adequately. The main issue to overcome when using land-
ings data is the delayed availability of this information, when,
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for management purposes, it would be needed almost in real
time. Moreover relating position to catches it is not always
possible in the case of landings data. Catches can also be
obtained by means of specific forms distributed among the
fishing fleet of one or more harbours. In this case skippers
of the fishing vessels are required fill in the forms with all
the required information at the end of each fishing day. This
approach may fail because fishermen can not guarantee the
required attention for time-spans long enough to create ap-
propriate time series.

Furthermore, in order to yield abundance data with time
and spatial resolutions comparable with environmental data,
fishery observing systems need to be improved using more
advanced tools.

Generally, a good and appropriate observing system is fun-
damental in order to implement models to nowcast/forecast
the behaviour of the marine environment and the evolution of
parameters connected with it. Nowcast of fish abundance is
crucial for management. The use of traditional models (e.g.
Beverton and Holt, 1957) in the past did not avoid the de-
cline of very exploited fish stocks (Pauly et al., 2002), thus
the need to accomplish models which consider each single
aspect of the problem, has become more and more impor-
tant.

Fisheries nowcasting/forecasting is at a very preliminary
stage and the number of variables involved to predict abun-
dances of life stages (or age classes) of one species is high.
Onet way to address the problem would consist in the reali-
sation of a fish module in the existing and developing mod-
els of hydrodynamics and ecosystem. Population dynamics
of fish are complicated in their interactions with the natural
system; mortalities, by predation and/or by fishing for each
life stage, are not easy to measure. A preliminary, fundamen-
tal, step toward fishery forecasting for management purposes
would thus be the set up of an automated Fishery Observing
System (FOS). In this paper a new kind of FOS is presented
and discussed.

Typically the fishery sector has been considered as end
user of the products and information deriving from oceano-
graphic research activity whereas its role as possible data
source has been largely ignored (Simpson, 1994). The idea
here is that fishermen become part of the observing system,
not only because they can provide us with catch information
but also because the use of their daily presence at sea for col-
lecting environmental data could open the way to a new kind
of ship of opportunity.

The FOS was tested in the Adriatic Sea. Data collection
started in August 2003 and it is still ongoing. This paper
presents the data collected until the end of August 2005.

The long-term objective is that of developing a short term
forecasting system for fish stock abundance in the Adriatic
Sea, extendable to other marine regions and species. In this
pilot application the species selected is mainly anchovy (En-
graulis encrasicolus, L.), one of the most important commer-
cial species, being the target of an important fishery in the

northern and central Adriatic Sea with an annual catch fluc-
tuating, at present, between 20 000 and 30 000 tonnes (San-
tojanni et al., 2003). The Adriatic Sea was chosen among the
Mediterranean fishing areas for anchovy for three important
reasons: it is the principal fishing area for this species, it is
a continental basin (so relatively easy to monitor and with
limited lateral advection), it is covered by regional and shelf
MFSTEP models.

The paper is organized as follows: the second section pro-
vides a brief description of the status of the anchovy fishery
in the Adriatic sea; in Sect. 3, the Fishery Observing System
(FOS) is described and discussed along with some informa-
tion regarding the data set used, the methodology used to
derive the abundance index and the statistical models used
to study the relationship between abundance index and en-
vironmental parameters; preliminary results are discussed in
Sect. 4.

2 Anchovy fishery in the Adriatic Sea

Anchovy (Engraulis encrasicolus, Linnaeus) caught by the
Italian Adriatic fishing fleet represents 90% of the total catch
in the Adriatic Sea and 24% of the total Mediterranean catch
(Santojanni et al., 2003; Cingolani et al., 2004). The value
of Adriatic anchovy landed catches was estimated at about
35 MECU in 1998. The importance of this species is thus ob-
vious. The choice of anchovy as target species of this study
is not only related to its economical importance but also to
two other basic reasons: (1) its short life span and the depen-
dence of year class strength on recruitment will allow the use
of these data to model possible relationships between envi-
ronmental parameters and recruitment; (2) the fact that an-
chovy is zooplanktophagous means it is directly linked to a
lower trophic level which could be the final result of current
investigation on bio-physical modelling (Vichi et al., 1998).

Anchovy mainly spawns from spring to autumn through-
out the northern and central Adriatic and juveniles concen-
trate in shallow waters (less than 30 m depth) along the Ital-
ian coasts (Regner, 1996). Few months after recruitment, an-
chovy already reaches commercial size. Knowledge of how
anchovies interact with environmental variables, especially
temperature, salinity, density, stratification, fronts and other
biological variables such as zooplankton, is necessary. This
has not yet been achieved because, while increasingly accu-
rate 3-D fields of environmental variables are available daily
as model forecast and hindcast outputs, there is very limited
(spatial and/or temporal) information about the geographical
distribution of anchovies and their daily variations. A new
kind of FOS is thus also intended to fill in this gap.

The Italian fishing fleet for small pelagics is distributed
all along the Adriatic coast and two kinds of fishing gear
are currently used: mid water pelagic trawl nets towed by
two vessels (volante in Italian) and light attraction purse
seines (lampara in Italian). The same fishing gear catches
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anchovy (Engraulis encrasicolusL.) but also sardine (Sar-
dina pilchardusWalb.) and to a lesser extent other pelagic
fish such as sprat (Sprattus sprattusL.), horse mackerel (Tra-
churusspp.) and mackerel (Scomberspp.). Thevolanteis
mainly used in the northern and central Adriatic. At present
approximately 50 couples of fishing vessels use this gear;
their average engine power is 400 HP, average size of the ves-
sels is 54 GRT but there are wide variations in size and en-
gine power.Lamparavessels (25 boats, 40–80 GRT) operate
in the Central Adriatic, south of Ancona. Here it is almost
common for a fishing vessel to switch fromlampara dur-
ing the summer season (when there are favourable weather
conditions for this fishing technique) to pelagic trawl for the
remaining part of the year. During thelamparafishing sea-
son (April/May–November) some fishing vessels registered
in southern Adriatic move into the Central Adriatic increas-
ing the lampara fishing fleet up to a total of about 50/55
boats. Smallerlampara (17 boats) operate in the Gulf of
Trieste.

Anchovy fishery experienced a sudden collapse in 1987,
when only 3700 t were landed. Evidence from assessments
suggests that the collapse was caused by very low recruit-
ment. This was probably due to environmental factors de-
termining the level of recruitment (Cingolani et al., 1996;
Santojanni et al., 2006). Since then, total annual catches of
anchovy has increased but a complete recovery did not oc-
cur. It is thus important to devise an integrated system able
to collect information regarding both fish stock abundance
and environmental parameters.

3 Material and methods

3.1 Fishery observing system

The development of the FOS was based on the need to obtain
all possible data without impacting too much on the fishing
activity (condition necessary in order to obtain fishermen’s
collaboration). The FOS, in its last version, consists mainly
of three components: an electronic logbook (EL), a GPS and
a temperature and pressure recorder (Fig. 1). The latter two
components are available on the market whilst the EL was
developed ad hoc for this application although standard elec-
tronic components were used to build it. Each single com-
ponent of the FOS generates a file: catch and position data
are stored on the EL, temperature and depth data are stored
on the memory of the sensor. Temperature data are collected
every time the fishing gear is hauled; they have different pat-
terns depending on which kind of fishing technique is used
as it will be pointed out subsequently. Eventually, all data are
stored in a database and collated.

3.1.1 Electronic logbook and positioning

The core component of FOS is the EL, in particular this is a
computer with a touch screen as user interface. The EL has

Fig. 1. FOS components.

been strongly modified from the initial version. In the last
version, as showed in Fig. 1, it is made up by two separate
components, the screen and the central unit. In this way it
does not take up too much room and it looks like common
equipment installed on the deck of the fishing vessel. The
central unit is very compact and allows different installation
solutions. A very compact mainboard (VIA EPIA PD-Series
Mini-ITX) was used in order to maintain a reduced size of the
central unit. It features four serial communication ports and
up to six 2.0 USB connections. In our application only one
USB port, for direct data downloading or to connect external
devices (keyboard, mouse, etc. . . ) and three serial com ports,
to get permanent connection with the screen, the GPS and an
external modem, are needed. The latter allows data transmis-
sion to a remote computer via a GPRS/GSM connection. The
production of the EL was carried out by ASYSTEL of Trevi
– Italy.

Catch data are input by means of a dedicated software,
programmed to be as user friendly as possible, where only
the essential information are required for input. Information
regarding the species are required. They are indicated by the
software and for each species the skipper enters only the total
catch for haul, an estimate of the mean size of individuals in
the catch (this information is required only for anchovy and
sardine) and the discards (in terms of catch and size). In or-
der to simplify this process, the measure unit of catches was
established as boxes of fish and the mean size is expressed
in number of fishes per kilogram for anchovy and in two
categories for sardine: large or small. These are the com-
mon ways used by fishermen in the Adriatic to indicate catch
and mean size for these two species. In the post-processing
phase, catches are converted in kg using a known conversion
factor between boxes and kg. This factor generally differs
from harbour to harbour.

A CMC Electronics Smart GPS antenna is connected with
and powered by the EL. Thus every time the EL is switched
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Fig. 2. Green tracks indicate the hauls carried out by the fishing
vessel from Giulianova, in dark green and cyan the hauls of the
two trawlers from S. Benedetto del Tronto, in black and orange the
tracks of two vessels from Ancona, in purple and red the tracks
of Rimini vessels and in light blue the tracks of Chioggia vessels.
The areas (labelled from 1 to 10) used in the CPUE standardization
processes are shown.

on, the GPS is as well and GPS records are stored every time
catch records are. Position accuracy is about 20 m. Position,
date, time and speed are recorded every minute. Catch data
are stored in a different file with respect to the file containing
position records. At this stage catches are not geo-referenced
yet as catch data could be inputted after the haul is concluded
far from the real position. Haul selection and then catch geo-
referencing is accomplished in the post processing phase.

3.1.2 Temperature and pressure recorder

The third component of the FOS is a temperature and pres-
sure sensor (TPs hereafter Fig. 1). The probe used is pro-
duced by Star Oddi company (Iceland) and its main charac-
teristic is its reduced dimension. This characteristic is impor-
tant for the current application in that the sensor is attached
to the fishing gear and small equipment limits the impact on
the gear and can be positioned in a safe way. The TPs used
are of the DST Milli type; they are only 4 cm in length with
a diameter of about 1 cm. Accuracy is±0.1◦C for tempera-
ture and±0.4% of depth range. Two different sensor ranges
were used: 100 m and 300 m. Memory space and also battery
consumption are related to the sampling interval. The lowest

value is 1 s and we used 30 s forlamparavessels and 1 min
for volanteas a best compromise between data time resolu-
tion and memory and battery usage. Milli sensors are self
contained with the possibility of being programmed to work
only during periods when data collection is performed. This
characteristic is particularly useful also because fishing ves-
sels work approximately during the same hours of the day.
So sampling can be continuous during working hours (even
when the fishing gear is not at sea) and on stand by for the
remaining time.

In order to test the performance of TPs, a comparison with
a Sea Bird 911 plus probe (two order of magnitude better
than TPs in accuracy) were carried out fastening the TPs at
the CTD frame during some oceanographic cruise of the R/V
Dalla Porta of the Italian National Research Council. Be-
ing 1T=Tms-TCTD, results show very good agreement be-
tween the temperature collected by Milli sensors (Tms) and
CTD (TCTD) especially in areas with low temperature gradi-
ents (Figs. 3a, b).1T∼3◦C when data are collected in ar-
eas of strong gradient such as across a summer thermocline
(Figs. 3a, b). This is because the time response of the TPs is
not as fast as that of the CTD, so they are unable to follow
rapid thermal variations. Together with the rate of response,
the descent velocity of the sensor is actually a fundamental
parameter in determining the accuracy of the data. Tests to
evaluate this contribution showed that when the descent ve-
locity of the sensor was about 10 m/min,1T ∼2◦C in cor-
respondence of the thermocline, whereas1T→0 above and
underneath the thermocline. Also TPs up-cast profile was in
very good agreement with the CTD one (Fig. 3b).

TPs provide a vertical temperature profile of the water col-
umn when applied to alamparafishing gear. In this case the
vessel holds the same position for the entire haul being TPs
mounted on the lowest part of the net, its vertical displace-
ment described the vertical temperature profile of the water
column. Considering that the average descent velocity of the
net during alamparahaul is about 8–9 m/min and that the
thermocline forms only during few months in the Adriatic
Sea, the use of these sensors was assumed to be appropri-
ate.Volantetemperature data refer essentially to the trawling
path of the vessels, when the net is approximately close to
the sea bottom. Data collected during lowering and rising
of the fishing gear can not be considered because these op-
erations are too fast (around 20 m/min in both cases) for the
characteristic time response of this class of TPs.

Although the performances of these sensors was satis-
factory, the need to increase the accuracy of temperature
measurements up to a standard oceanographic temperature
recorder, required improvements of the sensors. First of all,
an increase in the response rate with respect to temperature
variations; secondly the use of a pressure dependent trigger
to switch on the sensor; thirdly an increase in memory space
(allowing for both a faster sampling rate and a longer mainte-
nance interval) Such improvements were carried out by Star
Oddi company following our request and a new version of the
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Fig. 3. Temperature profiles collected by a Sea Bird CTD (red
curve) and Star Oddi Milli sensors (blue and green curve). In
panel(a) Milli sensor sampling interval is 1 s and the descent ve-
locity is approximately 1 m/s. In panel(b), Milli sensor sampling
interval is 30 s and the descent velocity is approximately 10 m/min.

sensor, called DST Logic, is now available. With these new
characteristics, the accuracy was increased by about the 20%
in correspondence to strong temperature gradients (Figs. 4a,
b). Furthermore, a higher sampling interval can be used dur-
ing the haul because the Logic sensor works during the haul
only and memory space is thus saved. Enlargement of mem-
ory space, allows to further increase sampling interval. Logic
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Fig. 4. Two examples of temperature profiles collected using Sea
Bird CTD (red curve), Star Oddi Milli sensor (green curve) and
Star Oddi Logic Sensor (blue curve).

are currently set up with a sampling interval of 1 s forlam-
paraapplication and 5 s forvolante.

3.2 Data set

3.2.1 FOS data collation

FOS was installed on eight boats belonging to fleets of
Chioggia, Rimini, Ancona, S. Benedetto del Tronto and
Giulianova degli Abruzzi, from north to south respectively
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Fig. 5. An example of monthly (May 2005) pelagic trawler tracks
distribution. Red tracks indicate the hauls carried out by the fishing
vessel from Giulianova, in black and orange the tracks of two ves-
sels from Ancona, in purple and green the tracks of Rimini vessels
and in light blue the tracks of Chioggia vessels.

(Fig. 2). Initially the decision was to monitor the fleet of one
harbour (Ancona) in order to increase the statistical relevance
of the data and assuming that more vessels could guarantee
a good spatial coverage. Successively, because fishing ves-
sels of the same fleet typically operate approximately within
the same fishing areas, it was assumed that one boat could
be representative of the movement of the entire fleet, and the
decision was taken to sample vessels belonging to fleets of
different harbours (Rimini, Ancona, S. Benedetto del Tronto
and Giulianova degli Abruzzi). This choice ensured a good
spatial coverage at least of the middle Adriatic (Fig. 2). Four
vessels were equipped with the instrumentation within the
first 3 months from the beginning of data collection (Au-
gust 2003). The other four were provided with a FOS a year
and half later, thanks to Italian national funding of the Direc-
torate General for Fishery of the Ministry of Agriculture. At
present two vessels per harbour are monitored, with the ex-
ception of Chioggia and Giulianova (where only one vessel
is monitored). Giulianova degli Abruzzi and San Benedetto
del Tronto vessels change fishing gear at the end of May and
until approximately mid October they are set up as lampara.
For the remaining part of the year they fish as volante along
with the other monitored fishing vessels.

FOS provides three different files which are uploaded on
a database developed in MS Access®. The uploading proce-
dure ends with data collation: catch data are geo-referenced

and associated with temperature at depth data. This opera-
tion is done for eachvolanteand lamparahaul. The selec-
tion of haul positions is based on depth data obtained by TPs.
The start time of the haul is set to coincide with the lower-
ing of the gear and the end time coincides with the lifting
of the gear. All positions included in this time interval are
then selected. Catch data are input sequentially and for every
fishing day, there is a correspondence between the temporal
sequence of catches and TPs measurement. Thus the order of
the hauls and their date allow merging of daily TPs data with
catch and position data. An example of a monthly tracks ob-
tained after the geo-referencing procedure is shown in Fig. 5.
While catch data covered all the period of measurement, tem-
perature and pressure data were sometimes missing. The rea-
sons for these failures are different: first of all in some cases
the sensors were lost or damaged. Moreover, when the GPS
does not receive the signal, TPs data cannot be associated
with geographic position.

3.2.2 Environmental data (from observations and numeri-
cal models)

Temperature measurements at net depth were collected dur-
ing the hauls. These measurements provide a parameter gen-
erally considered important in determining fish aggregation,
directly or indirectly. Many studies have pointed out the re-
lationship between fish abundance and SST (Simpson, 1994;
Cole, 1999; Waluda et al., 2001; Yanez et al., 2001), the latter
being obtained by satellite measurements. Within the frame-
work of MFSTEP, SST data and also surface chlorophyll are
made available for the entire Adriatic Sea by the ISAC-CNR,
Rome (http://www.bo.ingv.it/adricosm, Böhm et al., 2003)
and temperature at depth data are also available as model
outputs. Models also provide other important physical pa-
rameters in 3 dimensions such as salinity, which has been
used as a further explanatory variable in the analysis.

In situ temperature data were used in the analysis. Model
temperature data could be very useful for integration with in
situ data or SST when they are not available. Figure 6 il-
lustrates a comparison between in situ temperature data and
model temperature reanalysis for the period October 2003–
November 2004. Data from reanalysis were not yet available
following November 2004. For this comparison temperature
data collected by pelagic trawlers were used. For each haul
an along track average value was obtained considering only
the data collected when the net was at fishing depth (that can
be close to the sea bottom or at an intermediate level depend-
ing on where the fish school was detected). The haul aver-
age position was reported on the model grid and a temper-
ature value was linearly interpolated on each haul position
using the four nearest grid values. In particular data gath-
ered by one pelagic trawler from Rimini are represented in
Fig. 6 where the two curves are in good agreement except
in correspondence of quick warming which occurred during
the first decade of June 2004 (in Fig. 6 from haul numbers
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Table 1. Pelagic trawlers catch data information.

Vessel Total number Number and percentage Number and percentage Number and percentage
of hauls with T/P data with catch data with position data

Ancona 1 1376 980 (71%) 1137 (83%) 820 (60%)
Ancona 2 530 508 (96%) 447 (84%) 475 (89%)
Chioggia 346 322 (93%) 291 (84%) 314 (91%)
Giulianova 635 534 (84%) 528 (83%) 444 (70%)
Rimini 1 1343 1131 (84%) 988 (73%) 824 (62%)
Rimini 2 554 473 (85%) 527 (95%) 364 (65%)
S. Benedetto 1 166 148 (89%) 131 (79%) 120 (72%)
S. Benedetto 2 215 209 (97%) 143 (66%) 144 (67%)

180 to 200) when model data seem to overestimate the actual
temperature. After this transitioning phase, the two curves
were, once again, in good agreement. This was also con-
firmed by regression analysis (R2=0.94). Mean and standard
deviation of the difference between in situ and model temper-
atures were calculated for the first four fishing vessels used
in this experiment. The mean did not exceed 0.5◦C and the
standard deviation was in the worst case about 1.5◦C.

3.3 Evaluation of anchovy abundance

In the present paper, data from pelagic trawlers only were
considered in the analysis as they are more numerous than
purse seiners, they cover a greater area and they have a longer
temporal coverage. Table 1 summarises information regard-
ing volantehauls for the period October 2003–August 2005.
In particular, the total number of hauls for each vessel is re-
ported together with the number and percentage of hauls with
catch, temperature and pressure and position data.

After FOS data were collated, the next step consisted in
estimating an index of relative fish abundance. To do this we
followed the classical method based on the use of catch and
effort data (Richards and Schnute, 1992; Goñi et al., 1999;
Campbell, 2004; Santojanni et al., 2005). MFSTEP satellite
and model products were selected and used as explanatory
variables.

Catch/abundance relationship is expressed by the equa-
tion:

C = qED (1)

whereD indicates the fish density,q is the catchability co-
efficient andE is the fishing effort. The fishing effort can
be defined as the sum of means deployed for catching fish
in a defined area over a defined period of time (Annex V of
SEC (90)2244 Commission Communication to the Council
and Parliament of the European Communities on the Com-
mon Fisheries Policy). Basically fishing effort comprises two
capacity elements (vessel and gear) and an activity measure
(time); thus it can be affected by either of these components.
Catchability, as effort, depends on technical parameters but
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Fig. 6. Comparison between in situ temperature measured during
Rimini trawler hauls (red curve) and re-analysis temperature ob-
tained from MFSTEP numerical models (blue curve).

also on biological factors such as fish availability and be-
haviour during fishing activity. From a statistical point of
view it can be considered as the probability of any single fish
to be caught. The Catch per unit of Effort CPUE is given by
the ratio:

CPUE=
C

E
= qD . (2)

If D is expressed in terms of number of fishN over the fish-
ing ground area A, then Eq. (2) can be rewritten as:

CPUE=
C

E
=

qN

A
. (3)

CPUE is thus a function of the coefficientq and of the num-
ber of fish. If the variations ofq can be accounted for, CPUE
depends on the number of fishN only. A correct evalua-
tion of q is thus crucial in order to use catch rate as an index
of abundance. Catchability (q) depends on many variables
which are not constant in time and space, and also vary for
different fishing vessels. The typical way to account for these
factors is to remove their effects on catch rates. This process
is known as catch and effort standardization (Richards and
Schnute, 1992; Gõni et al., 1999; Campbell, 2004; Maun-
der and Punt, 2004; Santojanni et al., 2005). Formally, all
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the effects are represented by a multiplicative model. Con-
sidering a fishing vessel A, the model relates the catch rate
of A to the catch rate of a reference vessel and also it has to
account for the difference between the current and standard
vessel in terms of fishing power, area effects, time spent at
sea and other possible factors. The reference vessel can be
one of those monitored and a well accepted method to deter-
mine the proportional coefficients consists in using General-
ized Linear Modelling (GLM) (Hilborn and Walters, 1992;
Venables and Dichmont, 2004). This procedure provides an
indication of the relative importance of the factors influenc-
ing catch rates and the computation of the standardized abun-
dance index as well.

In order to evaluate the standardized CPUE from our catch
data one of the two pelagic trawlers from Ancona was chosen
as reference vessel unit. A first explanatory variable of the
model accounts for the difference in fishing power between
vessels. Fish abundance is not constant in time, thus an inde-
pendent variable representing time variation was introduced.
The spatial variability of abundance was represented through
a variable Area. As shown in Fig. 2, the domain was divided
into 10 areas: 5 further inshore and 5 offshore. The isobaths
marked in blue in Fig. 2 represent the limit between the in-
shore and offshore areas, while the areas are separated in lat-
itudinal sense every 0.6 deg from 42.2 N to 44.8 N and the
northernmost sector of the Adriatic (the Gulf of Trieste) was
considered in its entirety. Following initial attempts at using
all data available, data collected by the Chioggia trawler were
discarded in order to prevent problems related to collinear-
ity because no possibility of overlapping with other vessels
existed. Catches obtained in the southernmost sector of the
domain (basically the area of S. Benedetto del Tronto and
Giulianova) are characterized by a lower number of boxes of
larger individuals than catches obtained in the northern sec-
tor (Rimini and Chioggia areas). Ancona fishing vessels can
overlap on both the fishing grounds and also operate on an
exclusive area. In this case, catch and size have an intermedi-
ate value between northern and southern values. Thus a fur-
ther independent variable was introduced to account, in par-
ticular, for differences in mean size of individuals in the catch
(the number of boxes being to some extent a consequence of
the size of anchovy caught). Three size classes were chosen:
the first including all catches with sizes lower than 55 an-
chovies/kg; the second class ranging between 55 and 70; the
third including catches with more than 70 anchovies/kg. The
first class was thus characterized by the biggest anchovies.

3.4 Generalized Additive Models (GAM)

Generalized additive models are suitable tools for exploring
a data set and pointing out relationships between dependent
and independent variables (Hastie and Tibshirani, 1991).
GAM have already been used in spatio-temporal stock as-
sessment modelling of different marine species (Swartzman
et al., 1992; Daskalov, 1999; Hedger et al., 2004), as well

as to carry out temporal analysis of commercial trawler data
(Denis et al., 2002) or to improve catch-at-age indices of tar-
get species (Piet, 2002). GAM were also proposed as one
possible comparison standards for catch data obtained from
commercial logbooks (Walsh and Kleiber, 2004).

GAM are more flexible tools than traditional parametric
models (such as linear or nonlinear regression) in that some
parametric assumptions are relaxed, allowing to uncover pat-
terns in the relationships between the dependent variables
and independent variables that could otherwise be missed.

Let Y=(y1,. . . ..yp) be the response variable and
X=(x1,. . . ..,xp) be a set of predictor variables. The lin-
ear relationship between expected value of Y and X,
assumes the form:

E(Y) = f (x1, . . . , xp) = β0 + β1x1 + . . . + βpxp (4)

Additive models generalize linear models by substituting the
β parameters in Eq. (4) with smoothing functions. In this
case, ifs1,. . . ..,sp are the smoothing functions, the expecta-
tion Y can be written as:

E(Y) = f (x1, . . . , xp) = s0 + s1x1 + . . . + spxp (5)

The s functions are local smoothers and are estimated in a
nonparametric way. Spline functions are commonly used to
represent the smoothing terms.

GAM extend linear models in another way, namely by al-
lowing for a link betweenf

(
x1, ....., xp

)
and the expected

value of the dependent variable. In this way an alternative
distribution for the underlying variation can be considered
and not just normal distribution. There are many statistical
applications where Gaussian models can not be used allow-
ing GAM to be applied to a wide range of case studies. GAM
consist of a random component, an additive component, and
a link function relating first two components. The responseY

is the random component and it is assumed to have a density
in the exponential family:

fY (y; θ; φ) = exp

[
yθ − b(θ)

a(φ)
+ c(y, φ)

]
(6)

whereθ is called the natural parameter andφ is the scale
parameter. Normal, binomial, and Poisson distributions are
all included in this family, together with others. The additive
component can be written as:

η = s0 +

p∑
i=1

si(Xi) (7)

wheres1,. . . ..,sp are the smoothing functions. Eventually,
the link functiong defines the relationship between the mean
µ of the response variable andη. In general this link can be
expressed by the relationg(µ)=η whereas the most popular
link function is the canonical link by whichµ=η.

Generalized linear models are particularly useful when ex-
ploration of the data set and visualisation of the relationship
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Fig. 7. Spatial distribution of standardized CPUE.

between the dependent variable and the independent vari-
ables are of concern. Where conventional linear techniques
failed to describe a possible relationship, GAM can be used
because of their capability to model non-linearities by means
of smoothing functions. The price to pay to be more flexible
than linear models is twofold: a reduced possibility of per-
forming statistical inference and the increase in the number
of degrees of freedom used by the smoothing terms.

The goodness of the fit is estimated by means of the de-
viance. Technically it is defined as “likelihood ratio statistic
for testing any specific model within the saturated model (a
model with as many parameters as there are observations),
assuming the scale parameter is known and has the value 1”
(Venables and Dichmont, 2004). For the normal case the re-
lation to evaluate the deviance is the same as the residual sum
of squares. Then for identity link its distribution is propor-
tional to the chi-squared.

4 Results

4.1 Catch per unit of effort distribution

General linear models (GLM) were applied in order to derive
a standardized value of CPUE.

The duration of the hauls was highly variable, so in order
to render each single haul catch value comparable with the
others, an hourly catch value was calculated and transformed
to Kg.
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Fig. 8. Monthly standardized CPUE time series.

For each haul a standardized value of CPUE was calcu-
lated and used in the analysis. The a-temporal representa-
tion of the distribution of CPUE is shown in Fig. 7. The do-
main was divided in square cells of 0.2◦

×0.2◦. This choice
ensured a good compromise between spatial resolution and
statistical reliability. An average CPUE value was then com-
puted for each cell along with the corresponding rms value
(not shown here). Highest values of CPUE were found in the
northernmost sector of the domain and moving southward,
along a coastal band that could remind the path of the West-
ern Adriatic Coastal Current and the underlying Dense Water
Outflow Current (WACC – Cushman-Roisin et al., 2001).

Besides a temporally and spatially averaged distribution
of CPUE, a monthly mean value was also evaluated. This
information is important in order to detect a possible trend
in abundance. In particular, the exponential values obtained
from the GLM analysis for the time variable, are represented
in Fig. 8. The first month of observation (October 2003)
was considered as reference point, so its value is set to 1
and all the other values were referred to it. Furthermore, the
difference between the current and the reference value pro-
vides the abundance increase or decrease in percentage. The
CPUE monthly mean curve shows a strong increase start-
ing from June 2004 to the end of July 2004. The reason for
this behaviour is not so clear especially if compared with the
same month in 2005 when abundance was less than half. This
may be an artefact introduced by the computation of CPUE
considering that the number of observations used to evaluate
CPUE in June and July 2004 were the lowest. A decrease was
revealed in September 2004 (generally, in the Adriatic Sea,
trawler activity is interrupted during the month of August)
followed by a recovery in the subsequent two months. A
weak descending trend can be observed between November
2004 and July 2005 At present it is wise to skip any specu-
lation about the reasons of such behaviour and wait for more
observations which will allow a better comprehension.
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Fig. 9. Relationship between longitude(a), latitude(b), depth(c), temperature(d) and salinity(e) and abundance obtained applying GAM
(Model 2) to Giulianova data set. In the last panel(f) the effects of depth on abundance data obtained applying Model 1 are represented.

4.2 GAM explanatory analysis

Standardized CPUE values were analysed to find possible re-
lationships with environmental parameters. Some environ-
mental parameters were available as model outputs and oth-
ers as in situ measurements. Position, depth, temperature
and salinity were chosen for GAM applications. The first
four parameters are FOS products whilst salinity is a model
output. In particular salinity re-analysis data, which were
available from March 2001 to November 2004, were used;
therefore for this application salinity data are available for the

period October 2003–November 2004. Remote sensing data
cannot be used at this stage of the analysis because of there
are too many hauls without measurement and GAM require
great spatial and temporal coverage. Separate considerations
regarding relationships of satellite products and abundance
will be made in the next paragraph. GAM were applied to
three vessels: in particular one vessel from Ancona and one
from Rimini because they had the longest and most contin-
uous time series. Although the Giulianova vessel switched
fishing gear (to lampara) for about 5 months, for the remain-
ing part of the year (7 months) it had the most continuous
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Fig. 10. Relationships between longitude(a), salinity (b) and temperature(c) on abundance applying GAM to the Ancona data set. In
panel(d) effects of salinity on abundance for the case study of Rimini are shown. This result was obtained applying GAM with temperature
and salinity as explanatory variables only.

catch time series. For this reason we included data coming
from this vessel in the analysis.

Along with information about possible relationships be-
tween dependent and independent variables, GAM also pro-
vide information as to which could be the optimal set of ex-
planatory variables. To do this, the Akaike’s information cri-
terion was used (AIC).

Different models were set up in order to find the optimal
set of explanatory variables. Among these models, three
main cases were chosen. In model 1 only FOS data were
used, thus position, depth and temperature. This was also
the application with the complete series of catch data (Octo-
ber 2003–August 2005). In model 2, salinity was introduced
and the time series limited to November 2004 as in model 3,
where position data were discarded and only depth, temper-
ature and salinity were used. The size of data set used has
effects on the AIC value, so this aspect has to be borne in
mind during the discussion following.

No conclusive results were found and a complex scenario
appeared. The best result (in terms of both deviance ex-
plained and AIC value, see Table 2) was obtained for the
Giulianova data set using all the independent variables in the
GAM application (Model 2). The effects of the explanatory

variables on abundance are represented for this case in Fig. 9.
Abundance appears to increase eastwards and southwards.
This is in contrast with the indications derived from depth
and salinity plots where the increase in abundance was found
in correspondence with decreasing depth and salinity. Of
course the latter two variables are correlated thus collinearity
problems may arise. On the other hand, the deviance ex-
plained by model 1 (without salinity) was lower and AIC is
greater than in model 2. Thus the decision was taken to keep
salinity (or depth) in the analysis. Figure 9f reveals a stronger
relationship between depth and abundance in model 1 com-
pared to model 2. Only depth, temperature and salinity were
used in model 3. AIC was higher (but the number of obser-
vations lower) than in model 1 and the explained deviance
was only a little bit lower than in the model 2 application.

GAM application on the data set of the vessel of An-
cona yielded less information compared to the previous case.
Model 2, again, explained a higher percentage of deviance
but it had the highest AIC.

In this case, acceptable results were given by a fourth com-
bination of independent variables. Using longitude, temper-
ature and salinity, AIC was 1233 and the deviance explained
about 20%. The effects of the three variables on abundance
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Table 2. Comparison of three GAM applications. Explanatory vari-
ables used are for the application of Ancona (AN) and they are
the same for the other two cases of Giulianova (GIU) and Rimini
(RIM).

Model AIC Deviance DF
explained

AN-Model 1 (lon,lat,temp,depth) 1068 20% 17
AN-Model 2 (lon,lat,temp,depth, sal) 1279 23% 21
AN-Model 3 (depth,temp,sal) 1273 17% 13

GIU-Model 1 1117 33% 17
GIU-Model 2 1003 45% 21
GIU-Model 3 1055 37% 13

RIM-Model 1 1549 8% 17
RIM-Model 2 1657 22% 21
RIM-Model 3 1627 17% 13

are shown in Figs. 10a, b, c. A weak increase in abundance
occurred in correspondence with high temperature and salin-
ity values and moving westwards (near the coast). As before,
the two latter results are in contrast.

The situation is more confused in Rimini. Model 1 ex-
plained only 8% of the deviance. Introducing salinity, the
value jumped to the 22% (approximately the same value as
Ancona). When a model including only temperature and
salinity as explanatory variables was used, the salinity vs.
abundance plot (Fig. 10d) showed a maximum in abundance
at approximately 35.5 psu to then quickly decrease. The
maximum was less evident in the other GAM application.
The AIC value in this case was 1622, lower than models 2
and 3.

4.3 Preliminary satellite data analysis

Although their contribution could be important, satellite
products (SST and chlorophyll) were not used in GAM appli-
cations, because of the paucity of data. SeaWIFS chlorophyll
concentration data were available up to December 2004 thus
all the 2005 hauls could not be associated with this param-
eter. SST data were, unfortunately, missing for 52% of the
hauls from Giulianova, 55% of the hauls from Ancona and
58% of the hauls from Rimini.

Using the data available a regression analysis was carried
out. SST at this stage did not appear to play any signifi-
cant role in driving fish aggregation. Chlorophyll behaved
approximately in the same way with the exception of Giu-
lianova abundance data. In this case the R2 was 0.49 and the
correlation was statistically significant (t-test, p>0.01).

5 Discussion

Factors influencing small pelagic fish aggregation include
spawning, feeding, migration and environmental effects
(Agostini and Bakun, 2002). Studies regarding how envi-
ronmental conditions influence distribution and abundance
of small pelagics pointed out that temperature could be an
important factor (Ýañez et al., 2001; Beare et al., 2004) but
salinity (Regner, 1996), currents (Nishimoto and Washburn,
2002), wind as an upwelling driving force (Cole, 1999) and
eventually lunar effects (Agenbag et al., 2003) could play
some roles in driving aggregation. Understanding how the
environment influences fish distribution is complicated. The
complexity of the problem is not only conceptual but also
related to the lack of data to describe the environment and
fish distribution at a comparable spatial and temporal reso-
lution. Estimates of fish biomass and distribution are gener-
ally obtained from experimental scientific surveys, which are
limited in time and sometimes in space too. Standard popu-
lation dynamics assessment methods based on commercial
data (e.g. Virtual Popolation Analysis – VPA, Hilborn and
Walters, 1992) do not give any information on fish distribu-
tion but only on biomass and exploitation levels. The FOS is
trying to bridge these gaps because a time continuous picture
of fish abundance distribution is obtained by means of geo-
referenced abundance indices (CPUE), which can be then
used together with detailed sets of environmental descriptors
obtained both from models and in situ measurement in the
framework of the MFSTEP project. Moreover this CPUE in-
dex could provide a near real time monitoring of the state
of the stock. Temperature data collected by fishing vessels,
can be used in numerical circulation models. Thus the possi-
bility of collecting oceanographic data using fishing vessels
should be given greater consideration in the future. Fishing
vessels spend about 200 days at sea covering all the seasons
and approximately the same area, at least on a yearly cycle.

At present the limits of the system are essentially two:
firstly, the application of the FOS is subject to the willingness
of the fishermen; hence it is necessary to strengthen the re-
lationships with the fishery sector. Secondly, at present FOS
data are available approximately monthly. This time interval
could be enough for fishery management purposes but is too
wide for operational applications. Forecasting of the marine
environment is accomplished daily, thus the necessity to re-
cover data at the same time interval is mandatory. Data stored
in the EL can be readily sent to a remote PC by means of a
GPRS modem (Fig. 1) whilst TPs need to be downloaded by
hand. Pressure data are fundamental to select hauls and for
catch geo-referencing. Thus in order to overcome this prob-
lem, TPs data should be transmitted to the EL. TPs with an
embedded wireless transmission module included are under
experimentation (e.g. by Rubec et al., 2005) but are probably
too big and impacting to be used on commercial fishing ves-
sels. The possibility of developing a compact TP (and possi-
bly a CTD) probe including a transmission wireless module
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will be an important issue to investigate in the near future.
Preliminary results of our study would suggest that the

oceanographic features which determine abundance distribu-
tion are more easily detected in the area of Giulianova, prob-
ably to particular dynamics which may be more favourable
to fish aggregation. In fact the coastal dynamics south of
Ancona is characterised by a particularly intense WACC in
turn characterised by high levels of kinetic energy (Cushman-
Roisin et al., 2001; Poulain, 2001). Areas of convergence
could be found both where the WACC encounters the de-
scending branch of the Middle Adriatic gyre and in corre-
spondence of the frontal zone which separates the coastal
fresh waters from offshore saltier waters. Bottom topography
can be also an important factor in determining areas of strong
gradients such as shelf break fronts (Garcia and Palomera,
1996). Such conditions may enhance fish aggregation in the
Giulianova area (central Adriatic) but the actual role of the
skipper, in using his own knowledge to choose the best fish-
ing area as a function of environmental conditions, is still
unclear. Despite being scarce and thus not included in pre-
vious discussions, data collected by the S. Benedetto fishing
vessel (whose main fishing grounds are the same as the Giu-
lianova vessel), when analysed with GAM-model 2, yielded
similar results (deviance explained 46%, lowest AIC). Fur-
thermore there is a statistically significant linear relationship
between satellite derived chlorophyll and CPUE in this sec-
tor of the domain. Results obtained from data from Ancona
and Rimini are more confused. The Adriatic Sea is a semi-
enclosed basin where the contribution of the Po River outflow
strongly influences both the physics and the biology of the
environment. The importance of the correlation between an-
chovy abundance and recruitment with river freshwater out-
put has already been proved by previous studies (e.g. Lloret
al., 2004; Santojanni et al., 2006) and river effects can be
also noticeable in semi-enclosed basins (Daskalov, 1999). In
order to analyse the relationship between CPUE and river
discharge, the spreading of fresh water and the location of
haline fronts, the spatial and temporal resolution of CPUE
data should probably be different, and greater, compared to
that used in the present study.

Remote sensing data could provide more information in
this direction. Unfortunately these were not used in GAM
analyses because the percentage of hauls for which satellite
data was available was low. Nevertheless, satellite products
are important and work should be done towards the integra-
tion of satellite date into the set of explanatory variables.
Furthermore, efforts should also be made towards a similar
integration of data emerging from bio-chemical models. To-
gether these integrations could contribute very important ele-
ments towards the understanding of anchovy distribution and
reduce the uncertainty around the mechanisms which link
physical and biological processes.

Lampara data were not used to evaluate the CPUE index
and because pelagic trawlers stop their activity during Au-
gust, no information is available for this month.Lamparas

work essentially in the southern sector of the domain and in-
cluding these catch data would allow to fill the exiting gaps in
CPUE time series, at least for this sector of the domain. The
question of how standardized CPUE are to be derived from
the same vessels using different fishing gear during different
periods is an interesting issue and will be focussed upon in
the near future.

Forecasting fish abundance is, at present, a difficult and
challenging activity. The inclusion of a component which
also provides resource estimates into numerical models for
environmental prediction, has not yet been achieved. Model
data can be used to provide and/or integrate experimental
data in order to study the relationships between resource pat-
terns and the environment. In this context a resource observ-
ing system has to provide data with a spatial and temporal
resolution comparable with model outputs. FOS discussed so
far is a first and successful attempt towards this. It could be
applied to other areas of the Mediterranean Sea where fishing
activity is important, in order to create a wider monitoring
system. Interactions and a stronger link between the research
community and the fishing industry (Simpson, 1994) as well
as regulatory authorities, would be a first and consistent step
towards the institution of an operational fishery oceanogra-
phy framework aiming towards a better management of the
resources.
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