84 research outputs found

    Colloidal transport through optical tweezer arrays

    Full text link
    Viscously damped particles driven past an evenly spaced array of potential energy wells or barriers may become kinetically locked in to the array, or else may escape from the array. The transition between locked-in and free-running states has been predicted to depend sensitively on the ratio between the particles' size and the separation between wells. This prediction is confirmed by measurements on monodisperse colloidal spheres driven through arrays of holographic optical traps.Comment: 4 pages, 4 figure

    Transitive and Gallai colorings

    Full text link
    A Gallai coloring of the complete graph is an edge-coloring with no rainbow triangle. This concept first appeared in the study of comparability graphs and anti-Ramsey theory. We introduce a transitive analogue for acyclic directed graphs, and generalize both notions to Coxeter systems, matroids and commutative algebras. It is shown that for any finite matroid (or oriented matroid), the maximal number of colors is equal to the matroid rank. This generalizes a result of Erd\H{o}s-Simonovits-S\'os for complete graphs. The number of Gallai (or transitive) colorings of the matroid that use at most kk colors is a polynomial in kk. Also, for any acyclic oriented matroid, represented over the real numbers, the number of transitive colorings using at most 2 colors is equal to the number of chambers in the dual hyperplane arrangement. We count Gallai and transitive colorings of the root system of type A using the maximal number of colors, and show that, when equipped with a natural descent set map, the resulting quasisymmetric function is symmetric and Schur-positive.Comment: 31 pages, 5 figure

    Influence of non-conservative optical forces on the dynamics of optically trapped colloidal spheres: The fountain of probability

    Full text link
    We demonstrate both experimentally and theoretically that a colloidal sphere trapped in a static optical tweezer does not come to equilibrium, but rather reaches a steady state in which its probability flux traces out a toroidal vortex. This non-equilibrium behavior can be ascribed to a subtle bias of thermal fluctuations by non-conservative optical forces. The circulating sphere therefore acts as a Brownian motor. We briefly discuss ramifications of this effect for studies in which optical tweezers have been treated as potential energy wells.Comment: 4 pages, 3 figure

    HoloTrap: Interactive hologram design for multiple dynamic optical trapping

    Get PDF
    This work presents an application that generates real-time holograms to be displayed on a holographic optical tweezers setup; a technique that allows the manipulation of particles in the range from micrometres to nanometres. The software is written in Java, and uses random binary masks to generate the holograms. It allows customization of several parameters that are dependent on the experimental setup, such as the specific characteristics of the device displaying the hologram, or the presence of aberrations. We evaluate the software's performance and conclude that real-time interaction is achieved. We give our experimental results from manipulating 5 micron-diametre microspheres using the program.Comment: 17 pages, 6 figure

    Self Assembly of Soft Matter Quasicrystals and Their Approximants

    Full text link
    The surprising recent discoveries of quasicrystals and their approximants in soft matter systems poses the intriguing possibility that these structures can be realized in a broad range of nano- and micro-scale assemblies. It has been theorized that soft matter quasicrystals and approximants are largely entropically stabilized, but the thermodynamic mechanism underlying their formation remains elusive. Here, we use computer simulation and free energy calculations to demonstrate a simple design heuristic for assembling quasicrystals and approximants in soft matter systems. Our study builds on previous simulation studies of the self-assembly of dodecagonal quasicrystals and approximants in minimal systems of spherical particles with complex, highly-specific interaction potentials. We demonstrate an alternative entropy-based approach for assembling dodecagonal quasicrystals and approximants based solely on particle functionalization and shape, thereby recasting the interaction-potential-based assembly strategy in terms of simpler-to-achieve bonded and excluded-volume interactions. Here, spherical building blocks are functionalized with mobile surface entities to encourage the formation of structures with low surface contact area, including non-close-packed and polytetrahedral structures. The building blocks also possess shape polydispersity, where a subset of the building blocks deviate from the ideal spherical shape, discouraging the formation of close-packed crystals. We show that three different model systems with both of these features -- mobile surface entities and shape polydispersity -- consistently assemble quasicrystals and/or approximants. We argue that this design strategy can be widely exploited to assemble quasicrystals and approximants on the nano- and micro- scales. In addition, our results further elucidate the formation of soft matter quasicrystals in experiment.Comment: 12 pages 6 figure

    Restoration of energy homeostasis by SIRT6 extends healthy lifespan

    Get PDF
    Aging leads to a gradual decline in physical activity and disrupted energy homeostasis. The NAD+-dependent SIRT6 deacylase regulates aging and metabolism through mechanisms that largely remain unknown. Here, we show that SIRT6 overexpression leads to a reduction in frailty and lifespan extension in both male and female B6 mice. A combination of physiological assays, in vivo multi-omics analyses and 13C lactate tracing identified an age-dependent decline in glucose homeostasis and hepatic glucose output in wild type mice. In contrast, aged SIRT6-transgenic mice preserve hepatic glucose output and glucose homeostasis through an improvement in the utilization of two major gluconeogenic precursors, lactate and glycerol. To mediate these changes, mechanistically, SIRT6 increases hepatic gluconeogenic gene expression, de novo NAD+ synthesis, and systemically enhances glycerol release from adipose tissue. These findings show that SIRT6 optimizes energy homeostasis in old age to delay frailty and preserve healthy aging

    SIRT6 Promotes Hepatic Beta-Oxidation via Activation of PPARα

    Get PDF
    The pro-longevity enzyme SIRT6 regulates various metabolic pathways. Gene expression analyses in SIRT6 heterozygotic mice identify significant decreases in PPARα signaling, known to regulate multiple metabolic pathways. SIRT6 binds PPARα and its response element within promoter regions and activates gene transcription. Sirt6+/− results in significantly reduced PPARα-induced β-oxidation and its metabolites and reduced alanine and lactate levels, while inducing pyruvate oxidation. Reciprocally, starved SIRT6 transgenic mice show increased pyruvate, acetylcarnitine, and glycerol levels and significantly induce β-oxidation genes in a PPARα-dependent manner. Furthermore, SIRT6 mediates PPARα inhibition of SREBP-dependent cholesterol and triglyceride synthesis. Mechanistically, SIRT6 binds PPARα coactivator NCOA2 and decreases liver NCOA2 K780 acetylation, which stimulates its activation of PPARα in a SIRT6-dependent manner. These coordinated SIRT6 activities lead to regulation of whole-body respiratory exchange ratio and liver fat content, revealing the interactions whereby SIRT6 synchronizes various metabolic pathways, and suggest a mechanism by which SIRT6 maintains healthy liver

    Roadmap for Optical Tweezers 2023

    Get PDF
    Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nanoparticle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration
    • …
    corecore