Transitive and Gallai colorings

Abstract

A Gallai coloring of the complete graph is an edge-coloring with no rainbow triangle. This concept first appeared in the study of comparability graphs and anti-Ramsey theory. We introduce a transitive analogue for acyclic directed graphs, and generalize both notions to Coxeter systems, matroids and commutative algebras. It is shown that for any finite matroid (or oriented matroid), the maximal number of colors is equal to the matroid rank. This generalizes a result of Erd\H{o}s-Simonovits-S\'os for complete graphs. The number of Gallai (or transitive) colorings of the matroid that use at most kk colors is a polynomial in kk. Also, for any acyclic oriented matroid, represented over the real numbers, the number of transitive colorings using at most 2 colors is equal to the number of chambers in the dual hyperplane arrangement. We count Gallai and transitive colorings of the root system of type A using the maximal number of colors, and show that, when equipped with a natural descent set map, the resulting quasisymmetric function is symmetric and Schur-positive.Comment: 31 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions