317 research outputs found

    Semiconductor charge qubit relaxation due to two-phonon processes

    Full text link
    We theoretically study the relaxation of electron orbital states of a double quantum dot system due to two-phonon processes. In particular, we calculate how the relaxation rates depend on the separation distance between the quantum dots, the strength of quantum dot confinement, and the lattice temperature. Enhancement of the rates by specific inter-dot distances and lattice temperatures, and the relative strength of different scattering channels are discussed. Our results show that although at low temperatures (T1T \sim 1 K) two-phonon processes are almost four orders of magnitude weaker compared to one-phonon processes in relaxing electron orbital states, at room temperature they are as important as one-phonon processes.Comment: Submitted to PR

    Interactive regulation of root exudation and rhizosphere denitrification by plant metabolite content and soil properties

    Get PDF
    Aims Root exudates are known to shape microbial activities in the rhizosphere and to be of fundamental importance for plant-soil-microbe-carbon–nitrogen interactions. However, it remains unclear how and to what extent the amount and composition of root exudation affects rhizosphere denitrification. Methods In this study root exudation patterns and rhizosphere denitrification enzyme activity of three different grass species grown on two agricultural soils under two different soil water contents were investigated under controlled conditions. Results We found that root exudation of primary metabolites largely depends on plant species, soil type, soil moisture and root exudation medium. In dependence of soil properties and soil moisture levels, plants largely controlled amount and quality of root exudation. Exudates affected denitrification activity and plant–microbe competition for nitrate. Specifically, exudation of organic acids stimulated denitrifying activity while the sugar lyxose exhibited an inhibitory effect. Conclusion We show that interactive effects of physicochemical soil properties and species-specific effects of plant metabolism on root exudation act as a dominant control of rhizosphere denitrification, thereby explaining more than half of its variance

    Experimental field estimation of organic nitrogen formation in tree canopies

    Get PDF
    The content of organic N has been shown in many studies to increase during the passage of rain water through forest canopies. The source of this organic N is unknown, but generally assumed to come from canopy processing of wet or dry-deposited inorganic N. There have been very few experimental studies in the field to address the canopy formation or loss of organic N. We report two studies: a Scots pine canopy exposed to ammonia gas, and a Sitka spruce canopy exposed to ammonium and nitrate as wet deposition. In both cases, organic N deposition in throughfall was increased, but only represented a small fraction (<10%) of the additional inorganic N supplied, suggesting a limited capacity for net organic N production, similar in both conifer canopies under Scottish summertime conditions, of less than 1.6 mmol Nm2 mth1 (equivalent to 3 kg N ha1 y1)

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling

    Get PDF
    Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP(-/-) mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, beta-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.NWO ZonMw [MKMD 40-42600-98-13007]; FCT [SFRH/BPD/70277/2010]info:eu-repo/semantics/publishedVersio

    Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells

    Get PDF
    The Venus flytrap Dionaea muscipula captures insects and consumes their flesh. Prey contacting touch-sensitive hairs trigger traveling electrical waves. These action potentials (APs) cause rapid closure of the trap and activate secretory functions of glands, which cover its inner surface. Such prey-induced haptoelectric stimulation activates the touch hormone jasmonate (JA) signaling pathway, which initiates secretion of an acidic hydrolase mixture to decompose the victim and acquire the animal nutrients. Although postulated since Darwin’s pioneering studies, these secretory events have not been recorded so far. Using advanced analytical and imaging techniques, such as vibrating ion-selective electrodes, carbon fiber amperometry, and magnetic resonance imaging, we monitored stimulus-coupled glandular secretion into the flytrap. Trigger-hair bending or direct application of JA caused a quantal release of oxidizable material from gland cells monitored as distinct amperometric spikes. Spikes reminiscent of exocytotic events in secretory animal cells progressively increased in frequency, reaching steady state 1 d after stimulation. Our data indicate that trigger-hair mechanical stimulation evokes APs. Gland cells translate APs into touch-inducible JA signaling that promotes the formation of secretory vesicles. Early vesicles loaded with H⁺ and Cl⁻ fuse with the plasma membrane, hyperacidifying the “green stomach”-like digestive organ, whereas subsequent ones carry hydrolases and nutrient transporters, together with a glutathione redox moiety, which is likely to act as the major detected compound in amperometry. Hence, when glands perceive the haptoelectrical stimulation, secretory vesicles are tailored to be released in a sequence that optimizes digestion of the captured animal

    Time-to-care metrics in patients with interhospital transfer for mechanical thrombectomy in north-east Germany: primary telestroke centers in rural areas vs. primary stroke centers in a metropolitan area.

    Get PDF
    BACKGROUND: Mechanical thrombectomy (MT) is highly effective in large vessel occlusion (LVO) stroke. In north-east Germany, many rural hospitals do not have continuous neurological expertise onsite and secondary transport to MT capable comprehensive stroke centers (CSC) is necessary. In metropolitan areas, small hospitals often have neurology departments, but cannot perform MT. Thus, interhospital transport to CSCs is also required. Here, we compare time-to-care metrics and outcomes in patients receiving MT after interhospital transfer from primary stroke centers (PCSs) to CSCs in rural vs. metropolitan areas. METHODS: Patients from ten rural telestroke centers (RTCs) and nine CSCs participated in this study under the quality assurance registry for thrombectomies of the Acute Neurological care in North-east Germany with TeleMedicine (ANNOTeM) telestroke network. For the metropolitan area, we included patients admitted to 13 hospitals without thrombectomy capabilities (metropolitan primary stroke centers, MPSCs) and transferred to two CSCs. We compared groups regarding baseline variables, time-to-care metrics, clinical, and technical outcomes. RESULTS: Between October 2018 and June 2022, 50 patients were transferred from RTCs within the ANNOTeM network and 42 from MPSCs within the Berlin metropolitan area. RTC patients were older (77 vs. 72 yrs, p = 0.05) and had more severe strokes (NIHSS 17 vs. 10 pts., p < 0.01). In patients with intravenous thrombolysis (IVT; 34.0 and 40.5%, respectively), time from arrival at the primary stroke center to start of IVT was longer in RTCs (65 vs. 37 min, p < 0.01). However, RTC patients significantly quicker underwent groin puncture at CSCs (door-to-groin time: 42 vs. 60 min, p < 0.01). Despite longer transport distances from RTCs to CSCs (55 vs. 22 km, p < 0.001), there was no significant difference of times between arrival at the PSC and groin puncture (210 vs. 208 min, p = 0.96). In adjusted analyses, there was no significant difference in clinical and technical outcomes. CONCLUSION: Despite considerable differences in the setting of stroke treatment in rural and metropolitan areas, overall time-to-care metrics were similar. Targets of process improvement should be door-to-needle times in RTCs, transfer organization, and door-to-groin times in CSCs wherever such process times are above best-practice models

    Identification of two new protective pre-erythrocytic malaria vaccine antigen candidates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite years of effort, a licensed malaria vaccine is not yet available. One of the obstacles facing the development of a malaria vaccine is the extensive heterogeneity of many of the current malaria vaccine antigens. To counteract this antigenic diversity, an effective malaria vaccine may need to elicit an immune response against multiple malaria antigens, thereby limiting the negative impact of variability in any one antigen. Since most of the malaria vaccine antigens that have been evaluated in people have not elicited a protective immune response, there is a need to identify additional protective antigens. In this study, the efficacy of three pre-erythrocytic stage malaria antigens was evaluated in a <it>Plasmodium yoelii</it>/mouse protection model.</p> <p>Methods</p> <p>Mice were immunized with plasmid DNA and vaccinia virus vectors that expressed one, two or all three <it>P. yoelii </it>vaccine antigens. The immunized mice were challenged with 300 <it>P. yoelii </it>sporozoites and evaluated for subsequent infection.</p> <p>Results</p> <p>Vaccines that expressed any one of the three antigens did not protect a high percentage of mice against a <it>P. yoelii </it>challenge. However, vaccines that expressed all three antigens protected a higher percentage of mice than a vaccine that expressed PyCSP, the most efficacious malaria vaccine antigen. Dissection of the multi-antigen vaccine indicated that protection was primarily associated with two of the three <it>P. yoelii </it>antigens. The protection elicited by a vaccine expressing these two antigens exceeded the sum of the protection elicited by the single antigen vaccines, suggesting a potential synergistic interaction.</p> <p>Conclusions</p> <p>This work identifies two promising malaria vaccine antigen candidates and suggests that a multi-antigen vaccine may be more efficacious than a single antigen vaccine.</p
    corecore