46 research outputs found

    On Maximum Weight Clique Algorithms, and How They Are Evaluated

    Get PDF
    Maximum weight clique and maximum weight independent set solvers are often benchmarked using maximum clique problem instances, with weights allocated to vertices by taking the vertex number mod 200 plus 1. For constraint programming approaches, this rule has clear implications, favouring weight-based rather than degree-based heuristics. We show that similar implications hold for dedicated algorithms, and that additionally, weight distributions affect whether certain inference rules are cost-effective. We look at other families of benchmark instances for the maximum weight clique problem, coming from winner determination problems, graph colouring, and error-correcting codes, and introduce two new families of instances, based upon kidney exchange and the Research Excellence Framework. In each case the weights carry much more interesting structure, and do not in any way resemble the 200 rule. We make these instances available in the hopes of improving the quality of future experiments

    SEIS: Insight’s Seismic Experiment for Internal Structure of Mars

    Get PDF
    By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of ∌ 2500 at 1 Hz and ∌ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of Mw ∌ 3 at 40◩ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution

    Deriving Information from Sampling and Diving

    No full text

    Deriving information from sampling and diving

    No full text
    We investigate the impact of sampling and diving in the solution of constraint satisfaction problems. A sample is a complete assignment of variables to values taken from their domain according to a a given distribution. Diving consists in repeatedly performing depth first search attempts with random variable and value selection, constraint propagation enabled and backtracking disabled; each attempt is called a dive and, unless a feasible solution is found, it is a partial assignment of variables (whereas a sample is a \u2013possibly infeasible\u2013 complete assignment). While the probability of finding a feasible solution via sampling or diving is negligible if the problem is difficult enough, samples and dives are very fast to generate and, intuitively, even when they are infeasible, they give some statistic information on search space structure. The aim of this paper is to understand to what extent it is possible to help the CSP solving process with information derived from sampling and diving. In particular, we are interested in extracting from samples and dives precise indications on how good/bad are individual variable-value assignments with respect to feasibility. We formally prove that even uniform sampling could provide precise evaluation of the quality of variable-value assignments; as expected, this requires huge sample sizes and is therefore not useful in practice. On the contrary, diving seems to be much better suited for assignment evaluation purposes. Three dive features are identified and evaluated on a collection of Partial Latin Square instances, showing that diving provides information that can be fruitfully exploited. Many promising direction for future research are proposed

    Counting Solutions of Knapsack Constraints

    No full text

    Constructive Interval Disjunction

    Get PDF
    Abstract. This paper presents two new filtering operators for numerical CSPs (systems with constraints over the reals) based on constructive disjunction, as well as a new splitting heuristic. The fist operator (CID) isa generic algorithm enforcing constructive disjunction with intervals. The second one (3BCID) is a hybrid algorithm mixing constructive disjunction and shaving, another technique already used with numerical CSPs through the algorithm 3B. Finally, the splitting strategy learns from the CID filtering step the next variable to be split, with no overhead. Experiments have been conducted with 20 benchmarks. On several benchmarks, CID and 3BCID produce a gain in performance of orders of magnitude over a standard strategy. CID compares advantageously to the 3B operator while being simpler to implement. Experiments suggest to fix the CID-related parameter in 3BCID, offering thus to the user a promising variant of 3B.

    Influence of resistance training load on measures of skeletal muscle hypertrophy and improvements in maximal strength and neuromuscular task performance: A systematic review and meta-analysis

    No full text
    This systematic review and meta-analysis determined resistance training (RT) load effects on various muscle hypertrophy, strength, and neuromuscular performance task [e.g., countermovement jump (CMJ)] outcomes. Relevent studies comparing higher-load [> 60% 1-repetition maximum (RM) or < 15-RM] and lower-load (≀ 60% 1-RM or ≄ 15-RM) RT were identified, with 45 studies (from 4713 total) included in the meta-analysis. Higher- and lower-load RT induced similar muscle hypertrophy at the whole-body (lean/fat-free mass; [ES (95% CI) = 0.05 (−0.20 to 0.29), P = 0.70]), whole-muscle [ES = 0.06 (−0.11 to 0.24), P = 0.47], and muscle fibre [ES = 0.29 (−0.09 to 0.66), P = 0.13] levels. Higher-load RT further improved 1-RM [ES = 0.34 (0.15 to 0.52), P = 0.0003] and isometric [ES = 0.41 (0.07 to 0.76), P = 0.02] strength. The superiority of higher-load RT on 1-RM strength was greater in younger [ES = 0.34 (0.12 to 0.55), P = 0.002] versus older [ES = 0.20 (−0.00 to 0.41), P = 0.05] participants. Higher- and lower-load RT therefore induce similar muscle hypertrophy (at multiple physiological levels), while higher-load RT elicits superior 1-RM and isometric strength. The influence of RT loads on neuromuscular task performance is however unclear
    corecore