
Constructive Interval Disjunction

Gilles Trombettoni, Gilles Chabert

To cite this version:

Gilles Trombettoni, Gilles Chabert. Constructive Interval Disjunction. Christian Bessière.
CP’07 - 13th International Conference on Principles and Practice of Constraint Programming,
2007, Providence, United States. Springer, 4741, pp.635-650, 2007, LNCS. <10.1007/978-3-
540-74970-7 45>. <hal-00486726>

HAL Id: hal-00486726

https://hal.archives-ouvertes.fr/hal-00486726

Submitted on 26 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00486726

Constructive Interval Disjunction

Gilles Trombettoni1 and Gilles Chabert2

1 University of Nice-Sophia and COPRIN Project, INRIA, 2004 route des
lucioles, 06902 Sophia.Antipolis cedex, B.P. 93, France

2 ENSIETA, 2 rue François Verny, 29806 Brest cedex 09, France
trombe@sophia.inria.fr, gilles.chabert@ensieta.com

Abstract. This paper presents two new filtering operators for numerical
CSPs (systems with constraints over the reals) based on constructive dis-
junction, as well as a new splitting heuristic. The fist operator (CID) is a
generic algorithm enforcing constructive disjunction with intervals. The
second one (3BCID) is a hybrid algorithm mixing constructive disjunc-
tion and shaving, another technique already used with numerical CSPs
through the algorithm 3B. Finally, the splitting strategy learns from the
CID filtering step the next variable to be split, with no overhead.

Experiments have been conducted with 20 benchmarks. On several
benchmarks, CID and 3BCID produce a gain in performance of orders
of magnitude over a standard strategy. CID compares advantageously to
the 3B operator while being simpler to implement. Experiments suggest
to fix the CID-related parameter in 3BCID, offering thus to the user a
promising variant of 3B.

1 Introduction

We propose in this paper new advances in the use of two refutation principles
of constraint programming: shaving and constructive disjunction. We first intro-
duce shaving and then proceed to constructive disjunction that will be considered
an improvement of the former.

The shaving principle is used to compute the singleton arc-consistency (SAC)
of finite-domain CSPs [3] and the 3B-consistency of numerical CSPs [7]. It is
also in the core of the SATZ algorithm [9] proving the satisfiability of boolean
formula. Shaving works as follows. A value is temporarily assigned to a vari-
able (the other values are temporarily discarded) and a partial consistency is
computed on the remaining subproblem. If an inconsistency is obtained then
the value can be safely removed from the domain of the variable. Otherwise,
the value is kept in the domain. This principle of refutation has two drawbacks.
Contrarily to arc consistency, this consistency is not incremental [2]. Indeed,
the work of the underlying refutation algorithm on the whole subproblem is the
reason why a single value can be removed. Thus, obtaining the singleton arc
consistency on finite-domain CSPs requires an expensive fixed-point propaga-
tion algorithm where all the variables must be handled again every time a single
value is removed [3]. SAC2 [1] and SAC-optim [2] and other SAC variants ob-
tain better average or worst time complexity by managing heavy data structures

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 635–650, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

636 G. Trombettoni and G. Chabert

for the supports of values (like with AC4) or by duplicating the CSP for every
value. However, using these filtering operators inside a backtracking scheme is
far from being competitive with the standard MAC algorithm in the current
state of research. In its QuickShaving [8], Lhomme uses this shaving principle
in a pragmatic way, i.e., with no overhead, by learning the promising variables
(i.e., those that can possibly produce gains with shaving in the future) during the
search. Researchers and practitioners have also used for a long time the shaving
principle in scheduling problems. On numerical CSPs, the 2B-consistency is the
refutation algorithm used by 3B-consistency [7]. This property limited to the
bounds of intervals explains that 3B-consistency filtering often produces gains
in performance.

Example. Figure 1 (left) shows the first two steps of the 3B-consistency algo-
rithm. Since domains are continuous, shaving does not instantiate a variable to
a value but restricts its domain to a sub-interval of fixed size located at one of
the endpoints. The subproblems are represented with slices in light gray. The 2B-
consistency projects every constraint onto a variable and intersects the result of
all projections. In the leftmost slice, 2B-consistency leads to an empty box since
the projections of the first and the second constraint onto x2 are two intervals I1

and I2 with empty intersection. On the contrary, the fixed-point of projections
in the rightmost slice is a nonempty box (with thick border).

The second drawback of shaving is that the pruning effort performed by the
partial consistency operator to refute a given value is lost, which is not the case
with constructive disjunction1.

Constructive disjunction was proposed by Van Hentenryck et al. in the nineties
to handle efficiently disjunctions of constraints, thus tackling a more general
model than the standard CSP model [17]. The idea is to propagate independently
every term of the disjunction and to perform the union of the different pruned
search spaces. In other terms, a value removed by every propagation process
(run with one term/constraint of the disjunct) can be safely removed from the
ground CSP. This idea is fruitful in several fields such as scheduling, where a
common constraint is that two given tasks cannot overlap, or 2D bin packing
problems where two rectangles must not overlap.

Constructive disjunction can also be used to handle the classical CSP model
(where the problem is viewed as a conjunction of constraints). Indeed, every
variable domain can be viewed as a unary disjunctive constraint that imposes
one value among the different possible ones (x = v1 ∨ ... ∨ x = vn, where x is
a variable and v1, ..., vn are the different values). In this specific case, similarly
to shaving, the constructive disjunction principle can be applied as follows. Ev-
ery value in the domain of a variable is assigned in turn to this variable (the
other values are temporarily discarded), and a partial consistency on the cor-
responding subproblems is computed. The search space is then replaced by the
union of the resulting search spaces. One advantage over shaving is that the

1 Note that optimized implementations of SAC reuse the domains obtained by subfil-
tering in subsequent calls to the shaving of a same variable.

Constructive Interval Disjunction 637

(sub)filtering steps performed during constructive disjunction are better reused.
This constructive “domain” disjunction is not very much exploited right now
while it can sometimes produce impressive gains in performance. In particular,
in addition to all-diff constraints [14], incorporating constructive domain dis-
junctions into the famous Sudoku problem (launched, for instance, when the
variables/cases have only two remaining possible values/digits) often leads to a
backtrack-free solving. The same phenomenon is observed with shaving but at
a higher cost [15].

This observation has precisely motivated the research described in this pa-
per devoted to the application of constructive domain disjunction to numerical
CSPs. The continuous nature of interval domains is particularly well-suited for
constructive domain disjunction. By splitting an interval into several smaller in-
tervals (called slices), constructive domain disjunction leads in a straightforward
way to the constructive interval disjunction (CID) filtering operator introduced
in this paper.

After useful notations and definitions introduced in Section 2, Sections 3 and
4 describe the CID partial consistency and the corresponding filtering operator.
A hybrid algorithm mixing shaving and CID is described in Section 5. Section 6
presents a new CID-based splitting strategy. Finally, experiments are presented
in Section 7.

2 Definitions

The algorithms presented in this paper aim at solving systems of equations or,
more generally, numerical CSPs.

Definition 1. A numerical CSP (NCSP) P = (X, C, B) contains a set of
constraints C and a set X of n variables. Every variable xi ∈ X can take a real
value in the interval xi and B is the cartesian product (called a box) x1 × ...×
xn. A solution of P is an assignment of the variables in X satisfying all the
constraints in C.

Remark 1. Since real numbers cannot be represented in computer architectures,
the bounds of an interval xi should actually be defined as floating-point numbers.

CID filtering performs a union operation between two boxes.

Definition 2. Let Bl and Br be two boxes corresponding to a same set V of
variables.
We call hull of Bl and Br, denoted by Hull(Bl, Br), the minimal box including
Bl and Br.

To compute a bisection point based on a new (splitting) strategy, we need to
calculate the size of a box. In this paper, the size of a box is given by its perimeter.

Definition 3. Let B = x1 × ...× xn be a box. The size of B is
∑n

i=1(xi − xi),
where xi and xi are respectively the upper and lower bounds of the interval xi.

638 G. Trombettoni and G. Chabert

3 CID-consistency

The CID-consistency is a new partial consistency that can be obtained on numer-
ical CSPs. Following the principle given in introduction (i.e., combining interval
splitting and constructive disjunction), the CID(2)-consistency can be formally
defined as follows (see Figure 1).

Definition 4. (CID(2)-consistency)
Let P = (X, C, B) be an NCSP. Let F be a partial consistency.

Let Bl
i be the sub-box of B in which xi is replaced by [xi, x̌i] (where x̌i is the

midpoint of xi). Let Br
i be the sub-box of B in which xi is replaced by [x̌i,xi].

A variable xi in X is CID(2)-consistent w.r.t. P and F if
B = Hull(F (X, C, Bl

i), F (X, C, Br
i)). The NCSP P is CID(2)-consistent if all

the variables in X are CID(2)-consistent.

Fig. 1. Shaving and CID-consistency on a simple example with two constraints. The
constraints are represented with their intersection in dark gray. Left: The first two
steps of 3B. Right: the result of VarCID on variable x1 (with 2 slices). The subboxes
Bl

1 and Br
1 are represented with thick borders; the resulting box appears in dotted

lines.

For every dimension, the number of slices considered in the CID(2)-consistency is
equal to 2. The definition can be generalized to the CID(s)-consistency in which
every variable is split into s slices.

In practice, like 3B-w-consistency, the CID-consistency is obtained with a pre-
cision that avoids a slow convergence onto the fixed-point. We will consider that a
variable is CID(2,w)-consistent if the hull of the corresponding left and right boxes
resulting from subfiltering reduces no variable more than w.

Definition 5. (CID(2,w)-consistency)
With the notations of Definition 4, put B′ = Hull(F (X, C, Bl

i), F (X, C, Br
i)).

A variable xi in X is CID(2,w)-consistent if |xi| − |x′
i| ≤ w, where xi and x′

i are
the domain of xi in resp. B and B′.
TheNCSP isCID(2,w)-consistent if all the variables inX areCID(2,w)-consistent.

Constructive Interval Disjunction 639

AlgorithmCIDdetails theCID(s,w)-consistencyfiltering algorithm.Like the 3B-
consistency algorithm, CID iterates on all the variables until a stop criterion, de-
pending on w, is reached (see Definition 5): the Repeat loop is interrupted when no
variable interval has been reduced more than w 2.

Every variable xi is “varcided”, i.e., handled by the procedure VarCID. The
domain of xi is split into s slices of size |xi|

s each by the procedure SubBox.
The partial consistency operator F (e.g., 2B or a variant of the latter called
Box-consistency [16]) filters the corresponding sub-boxes, and the union of the
resulting boxes is computed by the Hull operator. Note that if the subfiltering
operator F applied to a given sub-box sliceBox detects an inconsistency, then
the result sliceBox’ is empty, so that there is no use of performing the union
of sliceBox’ with the current box in construction.

Algorithm CID (s: number of slices, w: precision, in-out P = (X, C, B): an NCSP,
F : subfiltering operator and its parameters)

repeat
Pold ← P
LoopCID (X, s, P , F)

until StopCriterion(w, P , Pold)

end.
Procedure LoopCID (X, s, in-out P , F)

for every variable xi ∈ X do
VarCID (xi, s, P , F)

end

end.
Procedure VarCID (xi, s, (X, C, in-out B), F)

B′ ← empty box
for j ← 1 to s do

sliceBox ← SubBox (j, s, xi, B) /* the jth sub-box of B on xi */
sliceBox’ ← F (X, C, sliceBox) /* perform a partial consistency */
B′ ← Hull(B′, sliceBox’) /* Union with previous sub-boxes */

end
B ← B′

end.

4 A CID-Based Solving Strategy

To find all the solutions of a numerical CSP, we propose a strategy including
a bisection operation, CID filtering and an interval Newton [10]. Between two
bisections, two operations are run in sequence:

1. a call to CID (how to fix the parameters is discussed just below),
2. a call to an interval Newton operator.
2 From a theoretical point of view, in order that the stop criterion leads to a (non unique)

fixed-point, it is necessary to return the box obtained just before the last filtering, i.e.,
the box in Pold in Algorithm CID.

640 G. Trombettoni and G. Chabert

The Right Set of Parameters for CID Filtering

First of all, the subfiltering operators we chose for CID are 2B and Box. The
classical user-defined parameter w-hc4 (percentage of the interval width) is used
by the subfiltering operator (Box or 2B) inside CID to control the propagation
loop. The parameter s is the number of slices used by the VarCID procedure.

Although useful to compute the CID-consistency property, the fixed-point re-
peat loop used by Algorithm CID does not pay off in practice (see below). In other
words, running more than once LoopCID on all the variables is always counterpro-
ductive, even if the value of w is finely tuned. Thus, we have set the parameter w
to ∞, that is, we have discarded w from the user-defined parameters.

Endowed with the parameters s and w-hc4, CID filtering appears to be an effi-
cient general-purpose operator that has the potential to replace 2B/Box (alone)
or 3B. For some (rare) benchmarks however, the use of only 2B/Box appears to
be more efficient.

To offer a compromise between pure 2B/Box and CID, we introduce a third
parameter n′ defined as the number of variables that are varcided between two
bisections in a round-robin strategy: given a predefined order between variables,
a VarCID operation is called on n′ variables (modulo n), starting at the lattest
varcided variable plus one in the order. (This information is transmitted through
the different nodes of the tree search.) Thus, if n′ is set to 0, then only 2B/Box
filtering is called between two bisections; if n′ = n (n is the number of variables
in the system), then CID is called between two bisections.

We shall henceforth consider that CID has three parameters: the number of
slices s, the propagation criterion w-hc4 of 2B/Box used for subfiltering and the
number n’ of varcided variables.

Default Values for CID Parameters

So far, we have proposed an efficient general-purpose combination of CID, inter-
val Newton and bisection. However, such a strategy is meaningful only if default
values for CID are available. In our solver, the default values provide the following
CID operator: CID(s=4, w-hc4=10%, n’=n).

Experiments have led us to select s = 4 (see Section 7.2):

– The optimal number of slices lies between 2 and 8.
– Selecting s = 4 generally leads to the best performance. In the other cases,

the performance is not so far from the one obtained with a tuned number of
slices.

Discarded Variants

Several variants of CID or combinations of operators have been discarded by our
experiments. Mentioning these discarded algorithms may be useful.

First, different combinations of bisection, CID and interval Newton have been
tried. The proposed combination is the best one, but adding an interval Newton
to the 2B/Box subfiltering (i.e., inside CID filtering) produces interesting results
as well.

Constructive Interval Disjunction 641

Second, we recommend to forget the fixed-point parameter w in CID. Indeed,
a lot of experiments confirmed that relaunching LoopCID several times in a row
between two bisections is nearly never useful. The same phenomenon has been
observed if the relaunch criterion concerns several dimensions, i.e., if the reduc-
tion of box size (perimeter or volume) is sufficiently large. A third experiment
running LoopCID twice between two splits leads to the same conclusion. Finally,
the same kind of experiments have been conducted with no more success to de-
termine which specific variables should be varcided again in an adaptive way.
All these experiments give us the strong belief that one LoopCID, i.e., varciding
all the variables once, is rather a maximal power of filtering.

Third, in a previous workshop version of this paper, we had proposed a CID246
variant of CID, in which the number s of slices was modified between two splits:
it was alternatively 2, 4 or 6 : s = ((i modulo 3) + 1) × 2), where i indicates the
ith call to LoopCID. The comparison with the standard CID was not fair because
the parameter s in CID was set to 2. It turns out that CID with s = 4 yields
nearly the same results as CID246 while being simpler.

Finally, we also investigated the option of a reentrant algorithm, under the
acronym k-CID. As k-B-consistency [7] generalizes the 3-B-consistency, it is pos-
sible to use (k − 1)-CID as subfiltering operator inside a k-CID algorithm. Like
4-B-consistency, 2-CID-consistency remains a theoretical partial consistency that
is not really useful in practice. Indeed, the pruning power is significant (hence a
small number of required splits), but the computational time required to obtain
the solutions with 2-CID plus bisection is often not competitive with the time
required by 1-CID plus bisection.

5 3B, CID and a 3BCID Hybrid Version

As mentioned in the introduction, the CID partial consistency has several points
in common with the well-known 3B-consistency partial consistency [7].

Definition 6. (3B(s)-consistency)
Let P = (X, C, B) be an NCSP. Let Bl

i be the sub-box of B in which xi is
replaced by [xi,xi + |xi|

s]. Let Br
i be the sub-box of B in which xi is replaced by

[xi − |xi|
s ,xi].

Variable xi is 3B(s)-consistent w.r.t. P if 2B(X, C, Bl
i) �= ∅ and 2B(X, C, Br

i)
�= ∅. The NCSP P is 3B(s)-consistent if all the variables in X are 3B(s)-
consistent.

For practical considerations, and contrarily to finite-domain CSPs, a partial con-
sistency of an NCSP is generally obtained with a precision w [7]. This precision
avoids a slow convergence to obtain the property. Hence, as in CID, a parameter
w is also required in the outer loop of 3B.

When the subfiltering operator is performed by Box consistency, instead of
2B-consistency, we obtain the so-called Bound consistency property [16].

The 3B algorithm follows a principle similar to CID, in which VarCID is re-
placed by a shaving process, called VarShaving in this paper. In particular, both

642 G. Trombettoni and G. Chabert

algorithms are not incremental, hence the outside repeat loop possibly reruns
the treatment of all the variables, as shown in Algorithm 3B.

Algorithm 3B (w: stop criterion precision, s : shaving precision, in-out
P = (X, C, B): an NCSP, F : subfiltering operator and its parameters)

repeat
for every variable xi ∈ X do

VarShaving (xi, s, P , F)
end

until StopCriterion(w, P)

end.

The procedure VarShaving reduces the left and right bounds of variable xi

by trying to refute intervals with a width at least equal to |xi|
s . The following

proposition highlights the difference between 3B filtering and CID filtering.

Proposition 1. Let P = (X, C, B) be an NCSP. Consider the box B′ obtained
by CID(s,w) w.r.t. 2B and the box B′′ obtained by 3B(s,w) 3. Then, CID(s,w)
filtering is stronger than 3B(s,w) filtering, i.e., B′ is included in or equal to B′′.

This theoretical property is based on the fact that, due to the hull operation in
VarCID, the whole box B can be reduced on several, possibly all, dimensions.
With VarShaving, the pruning effort can impact only xi, losing all the temporary
reductions obtained on the other variables by the different calls to F .

Proposition 1 states that the pruning capacity of CID is greater than the one
of 3B. In the general case however, 3B-consistency and CID-consistency are not
comparable because s is the exact number of calls to subfiltering F inside VarCID
(i.e., the upper bound is reached), while s is an upper bound of the number of
calls to 2B by VarShaving. Experiments will confirm that a rough work on a
given variable with CID (e.g., setting s = 4) yields better results than a more
costly work with 3B (e.g., setting s = 10).

The 3BCID Filtering Algorithm

As mentioned above, the 3B and CID filtering operators follow the same scheme,
so that several hybrid algorithms have been imagined. The most promising ver-
sion, called 3BCID, is presented in this paper.

3BCID manages two parameters : the numbers sCID and s3B of slices for the
CID part and the shaving part. Every variable xi is handled by a shaving and a
VarCID process as follows.

The interval of xi is first split into s3B slices handled by shaving. Using a
subfiltering operator F , a simple shaving procedure tries to refute these slices to
3 An additional assumption related to floating-point numbers and to the fixed-point

criterion is required in theory to allow a fair comparison between algorithms: the
2B/Box subfiltering operator must work with a subdivision of the slices managed by
3B and CID.

Constructive Interval Disjunction 643

the left and to the right (no dichotomic process is performed). Let sleft (resp.
sright) be the leftmost (resp. rightmost) slice of xi that has not been refuted by
subfiltering, if any. Let x′

i be the remaining interval of xi, i.e., sleft ≤ x′
i ≤ x′

i ≤
sright.

Then, if x′
i is not empty, it is split into sCID slices and handled by CID. One

performs the hull of the (at most) sCID + 2 boxes handled by the subfiltering
operator F : sleft, sright and the sCID slices between sleft and sright.

It is straightforward to prove that the obtained partial consistency is stronger
than 3B(s3B)-consistency.

The experiments will show that 3BCID with sCID = 1 can be viewed as an
improved version of 3B where constructive disjunction produces an additional
pruning effect with a low overhead.

6 A New CID-Based Splitting Strategy

There are three main splitting strategies (i.e., variable choice heuristics) used
for solving numerical CSPs. The simplest one follows a round-robin strategy and
loops on all the variables. Another heuristic selects the variable with the largest
interval. A third one, based on the smear function [10], selects a variable xi

implied in equations whose derivative w.r.t. xi is large.
The round-robin strategy ensures that all the variables are split in a branch

of the search tree. Indeed, as opposed to finite-domain CSPs, note that a vari-
able interval is generally split (i.e., instantiated) several times before finding a
solution (i.e., obtaining a small interval of width less than the precision). The
largest interval strategy also leads the solving process to not always select a
same variable as long as its domain size decreases. The strategy based on the
smear function sometimes splits always the same variables so that an interleaved
schema with round-robin, or a preconditionning phase, is sometimes necessary
to make it effective in practice.

We introduce in this section a new CID-based splitting strategy. Let us first
consider different box sizes related to (and learnt during) the VarCID procedure
applied to a given variable xi :

– Let OldBoxi be the box B just before the call to VarCID on xi. Let NewBoxi

be the box obtained after the call to VarCID on xi.
– Let Bl′

i and Br′
i be the left and right boxes computed in VarCID, after a

reduction by the F filtering operator, and before the Hull operation.

The ratio ratioBis leads to an “intelligent” splitting strategy. The ratio

ratioBis= f(Size(Bl′
i),Size(Br′

i))
Size(NewBox) , where f is any function that aggregates the size

of two boxes (e.g., sum), in a sense computes the size lost by the Hull operation
of VarCID. In other words, Bl′

i and Br′
i represent precisely the boxes one would

obtain if one splits the variable xi (instead of performing the hulloperation)

644 G. Trombettoni and G. Chabert

immediately after the call to VarCID; NewBox is the box obtained by the Hull
operation used by CID to avoid a combinatorial explosion due to a choice point.

Thus, after a call to LoopCID, the CID principle allows us to learn about a
good variable interval to be split: one selects the variable having led to the lowest
ratioBis. Although not related to constructive disjunction, similar strategies
have been applied to finite-domain CSPs [4,13].

Experiments, not reported here, have compared a large number of variants of
ratioBis with different functions f . The best variant is ratioBis

= Size(Bl′
i)+Size(Br′

i)
Size(NewBox) .

7 Experiments

We have performed a lot of comparisons and tests on a sample of 20 instances.
These tests have helped us to design efficient variants of CID filtering.

7.1 Benchmarks and Interval-Based Solver

Twenty benchmarks are briefly presented in this section. Five of them are sparse
systems found in [11]: Hourglass, Tetra, Tangent, Ponts, Mechanism. They
are challenging for general-purpose interval-based techniques, but the algorithm
IBB can efficiently exploit a preliminary decomposition of the systems into small
subsystems [11]. The other benchmarks have been found in the Web page of
the COPRIN research team or in the COCONUT Web page where the reader
can find more details about them [12]. The precision of the solutions. i.e., the
size of interval under which a variable interval is not split, is 1e − 08 for all
the benchmarks, and 5e − 06 for Mechanism. 2B is used for all the benchmarks
but one because it is the most efficient local consistency filtering when used
alone inside 3B or CID. Box+2B is more adequate for Yamamura8. All the selected
instances can be solved in an acceptable amount of time by a standard algorithm
in order to make possible comparisons between numerous variants. No selected
benchmark has been discarded for any other reason!

All the tests have been performed on a Pentium IV 2.66 Ghz using the
interval-based library in C++ developed by the second author. This new solver
provides the main standard interval operators such as Box, 2B, interval New-
ton [10]. The solver provides round-robin, largest-interval and CID-based split-
ting strategies. Although recent and under developement, the library seems com-
petitive with up-to-date solvers like RealPaver [5]. For all the presented solving
techniques, including 3B and 3BCID, an interval Newton is called just before a
splitting operation iff the width of the largest variable interval is less than 1e−2.

7.2 Results Obtained by CID

Table 1 reports the results obtained by CID(s, w-hc4, n′), as defined in Section 4.
The drastic reduction in the number of required bisections (often several or-

ders of magnitude) clearly underlines the filtering power of CID. In addition,

Constructive Interval Disjunction 645

Table 1. Comparison between [CID + interval Newton + round-robin bisection strat-
egy] and [a standard strategy]: 2B/Box + interval Newton + round-robin splitting.
n is the number of variables. The column #s yields the number of solutions. The
first column w-hc4 is the user-defined parameter w-hc4 used by 2B or Box. The last 3
columns s, w-hc4 and n′ indicate the values of parameters that have been tuned for CID
(first CID column). The second CID column reports the results of CID when s = 4 and
w-hc4= 10%, i.e., when only n′ is tuned. The third CID column reports the results of
CID when s = 4 and n′ = n, i.e., when only w-hc4 is tuned. The fourth CID column re-
ports the results of CID with the default values for parameters, i.e., s = 4, w-hc4= 10%,
n′ = n. Every cell contains two values: the CPU time in seconds to compute all the
solutions (top), and the number of required bisections (bottom). For every benchmark,
the best CPU time is bold-faced.

Name n #s w-hc4 2B/Box CID CID CID CID s w-hc4 n′

+ Newton (s, whc4, n′) (4, 10%, n′) (4, whc4, n) (4, 10%, n)

BroydenTri 32 2 15% 758 0.12 0.28 0.19 0.45 4 80% 40
2e+07 46 44 65 50

Hourglass 29 8 5% 24 0.44 0.44 0.52 0.52 4 10% 17
1e+05 109 109 80 80

Tetra 30 256 0.02% 401 10.1 11.6 11.7 14.5 4 30% 20
1e+06 2116 1558 1690 1320

Tangent 28 128 15% 32 3.7 3.7 4.9 5.1 4 50% 28
1e+05 692 692 447 450

Reactors 20 38 5% 156 15.6 16.4 16.7 17.7 4 15% 18
1e+06 2588 2803 2381 2156

Trigexp1 30 1 20% 371(3.4) 0.12 0.15 0.14 0.14 8 2% 30
5025 1 3 2 3

Discrete25 27 1 0.01% 5.2 0.62 1.08 0.84 2.13 8 0.5% 35
1741 2 3 12 99

I5 10 30 2% 692 126 147 150 157 6 2% 5
3e+06 23105 60800 20874 32309

Transistor 12 1 10% 179 66 79.4 91.4 91.4 8 10% 6
1e+06 11008 31426 16333 16333

Ponts 30 128 5% 10.8 2.7 2.9 2.9 3.1 4 30% 25
34994 388 338 380 304

Yamamura8 8 7 1% 13 7.5 9.5 9.5 9.5 4 10% 4
1032 104 60 60 60

Design 9 1 10% 395 275 278 313 313 5 10% 2
3e+06 200272 256000 76633 76633

D1 12 16 5% 4.1 1.7 1.7 1.7 1.7 4 10% 12
35670 464 464 464 464

Mechanism 98 448 0.5% TO(111) 43.1 45.2 46.6 47.8 4 2% 50
24538 3419 3300 2100 2420

Hayes 8 1 0.01% 155 75.8 77 111 147 4 80% 2
3e+05 1e+05 1e+05 81750 58234

Kin1 6 16 10% 84 76.8 76.8 83.5 87.4 4 10% 3
70368 6892 6892 4837 4100

Eco9 8 16 10% 26 18 19.4 26.6 26.6 3 10% 1
2e+05 55657 46902 10064 10064

Bellido 9 8 10% 80 94.4 94.4 106 106 4 10% 3
7e+05 1e+05 1e+05 45377 45377

Trigexp2-9 9 1 20% 61.8 50.4 65.14 62.4 68.4 6 10% 9
3e+05 4887 14528 11574 9541

Trigexp2-5 5 1 20% 3.0 3.8 4.6 6.2 6.6 2 20% 1
13614 10221 4631 2293 1887

Caprasse 4 18 30% 2.6 2.73 3.0 4.7 5.1 2 5% 1
37788 18176 12052 5308 5624

646 G. Trombettoni and G. Chabert

impressive gains in running time are obtained by CID for the benchmarks on
the top of the table, as compared to standard strategy using 2B or 2B+Box, an
interval Newton and a round-robin splitting policy4.

CID often obtains better running times than the standard strategy, except
on Bellido, Trigexp2-5 and Caprasse, for which the loss in performance is
small. However, it is not reasonable to propose to the user an operator for which
three parameters must be tuned by hand. That is why we have also reported
the last three CID columns where only 0 or 1 parameter has been tuned. The
default values (fourth CID column with s = 4, w-hc4= 10%, n′ = n) yield very
good results: it outperforms the standard strategy in 15 of the 21 instances. In
particular, setting s = 4 provides the best results in 12 of the 21 instances.

The second and third CID columns report very good results obtained by a
filtering algorithm with only one parameter to be tuned (like with 2B or Box).
Hence, since CID with only parameter n′ to be tuned (second CID column) allows
a continuum between pure 2B and CID (n′ = 0 amounts to a call to 2B), a first
recommendation is to propose this CID variant in interval-based solvers.

The second recommendation comes from a combinatorial consideration. In
a sense, constructive interval disjunction can be viewed as a “polynomial-time
splitting” since VarCID performs a polynomial-time hull after having handled the
different slices. However, the exponential aspect of (classical) bisection becomes
time-consuming only when the number of variables becomes high. This would
explain why CID cannot pay off on Trigexp2-5 and Caprasse which have a very
small number of variables and lead to no combinatorial explosion due to bisec-
tion. (The intuition is confirmed by the better behavior of CID on the (scalable)
variant of Trigexp2 with 9 variables.) Thus, the second recommendation would
be to use CID on systems having a minimal number of variables, e.g., 5 or 8.

7.3 Comparing CID, 3B and 3BCID

Table 2 reports the results obtained by CID, 3B and 3BCID (see Section 5). All
the results have been obtained with a parameter w-hc4 set to 5%.

Several trials have been performed for every algorithm, and the best result is
reported in the table. For 3B, seven values have been tried for the parameter s3B:
4, 5, 7, 10, 20, 50, 100.

For CID, nine values of the parameters have been tried: five values for the
number of slices sCID (2, 3, 4, 6, 8; fixing n′ = n), and four values for the pa-
rameter n′ (1, 0.5n, 0.75n, 1.2n; fixing sCID = 4). For 3BCID, eight combinations
of parameters have been tried: four values for sCID (1,2,3,4) combined with two
values for s3B (10, 20).
The main conclusions drawn from Table 2 are the following:

– 3BCID and CID always outperform 3B. Even the standard strategy outper-
forms 3B for 9 benchmarks in the bottom of the table.

4 Note that this strategy is inefficient for Trigexp1 (solved in 371 seconds) and for
Mechanism (that is not solved after a timeout (TO) of several hours). However, a
reasonable running time can be obtained with a variant of 2B that push all the
constraints of the NCSP in the propagation queue after every bisection.

Constructive Interval Disjunction 647

Table 2. Comparison between CID, 3B and 3BCID. The first three columns recall resp.
the name of the benchmark, its number of variables and the CPU time in seconds
required by the strategy 2B/Box + Newton + bisection with round-robin. The other
columns report the CPU time required to solve the benchmarks with CID, 3B and 3BCID.
The best CPU time result is bold-faced.

Name n 2B/Box CID 3B 3BCID(sCID = 1) 3BCID(sCID = 2)

BroydenTri 32 758 0.23 0.22 0.18 0.19

Hourglass 29 24 0.45 0.73 0.43 0.50

Tetra 30 401 13.6 20.7 17.1 18.8

Tangent 28 32 4.13 8.67 3.18 4.13

Reactors 20 156 18.2 24.2 15.5 16.9

Trigexp1 30 3.4 0.10 0.26 0.12 0.11

Discrete25 27 5.2 1.37 2.19 1.26 1.13

I5 10 692 139 144 115 123

Transistor 12 179 71.5 77.9 49.3 46.9

Ponts 30 10.8 3.07 5.75 4.19 4.43

Yamamura8 8 13 9.0 9.1 10.3 10.7

Design 9 395 300 403 228 256

D1 12 4.1 1.78 2.99 1.64 1.76

Mechanism 98 111 79 185 176 173

Hayes 8 155 99 188 102 110

Kinematics1 6 84 76.1 136 76.6 81.4

Eco9 8 26 19.3 40.1 27.0 30.3

Bellido 9 80 95 143 93 102

Trigexp2-9 9 61.8 52.2 74.5 39.9 45.1

Caprasse 4 2.6 3.1 9.38 4.84 5.35

– 3BCID is competitive with CID. 3BCID is better than CID concerning 11 bench-
marks. CID remains even better for Mechanism. We wonder if it is related to
its large number of variables.

The good news is that the best value for sCID in 3BCID is often sCID = 1. In only
four cases, the best value is greater, but the value sCID = 1 also provides very good
results. This suggests to propose 3BCID with sCID = 1 as an alternative of 3B. In
other words, 3BCID with sCID = 1 can be viewed as a promising implementation
of 3B. This is transparent for a user who has to specify the same parameter s3B,
the management of constructive disjunction being hidden inside 3BCID (that
performs a Hull operation of at most 3 boxes since sCID = 1).

7.4 Comparing Splitting Strategies

Table 3 applies the three available splitting strategies to CID with n′ = n and
s = 4. We underline some observations.

The new CID-based splitting strategy is better than the other strategies on
13 of the 20 instances, especially on Design. The largest interval strategy is the
best on only one instance. The round-robin strategy is the best on 6 instances.

648 G. Trombettoni and G. Chabert

Table 3. Comparison on CID with three splitting strategies: Round-robin, Largest
interval and the new CID-based strategy.

Filtering CID CID CID

Splitting Round-robin Largest Int. CID-based

BroydenTri 0.21 0.18 0.17

Hourglass 0.52 0.51 0.37

Tetra 12.1 28.2 16.4

Tangent 3.7 21.7 5.2

Reactors 17.0 13.2 12.7

Trigexp1 0.15 0.19 0.14

Discrete25 0.84 1.49 1.06

I5 151 421 179

Transistor 93 36 41

Ponts 2.92 5.51 2.31

Yamamura8 9.5 6.9 5.1

Design 318 334 178

D1 1.72 2.96 2.50

Mechanism 47 49 46

Hayes 115 564 318

Kinematics1 83 70 63

Eco9 26.7 31.4 26.1

Bellido 107 102 99

Trigexp2-9 62 55 53

Caprasse 5.16 5.43 5.04

On the 7 instances for which the CID-based strategy is not the best, the loss in
performance is significant on Hayes.

The behavior of the CID-based strategy with s = 6 (not reported here) is even
better, the round-robin strategy being the best on only 3 instances. This would
suggest that the ratioCID learned during a VarCID operation is more accurate
with a higher number of slices.

8 Conclusion

This paper has introduced two new filtering operators based on the constructive
disjunction principle exploited in combinatorial problems. The first experimental
results are very promising and we believe that CID and 3BCID have the potential
to become standard operators in interval constraint solvers. The CID operator also
opens the door to a new splitting strategy learning from the work of CID filtering.

The experiments lead to clear recommendations concerning the use of these
new filtering operators. First, CID can be used with fixed values of parameters s
and w-hc4, letting the user only tune the third parameter n′ (i.e., the number of
variables that are varcided between 2 bisections). This allows the user to select
in a sense a rate of CID filtering, n′ = 0 producing the pure 2B/Box. Used this
way, CID could maybe subsume existing filtering operators. Second, 3BCID with
s = 1 can be provided as a promising alternative of a 3B operator.

Constructive Interval Disjunction 649

Several questions remain open. It seems that, due to combinatorial consider-
ations, CID is not convenient for small problems while it seems more interesting
for large-scale systems. A more complete experimental study should confirm or
contradict this claim. Also, 3BCID should be compared to the weak-3B operator
implemented in RealPaver [5]5. A comparison with filtering algorithms based on
linearization, like Quad [6], will be performed as well.

Moreover, the CID-based splitting strategy merits a deeper experimental
study. In particular, a comparison with the smear function will be performed
once the latter is implemented in our solver.

An interesting future work is to propose adaptive variants of CID that can
choose which specific variable should be varcided or bisected next.

Acknowledgements

Special thanks to Olivier Lhomme for useful discussions about this research. Also
thanks to Bertrand Neveu, Arnold Neumaier and the anonymous reviewers.

References

1. Barták, R., Erben, R.: A new Algorithm for Singleton Arc Consistency. In: Proc.
FLAIRS (2004)

2. Bessière, C., Debruyne, R.: Optimal and Suboptimal Singleton Arc Consistency
Algorithms. In: Proc. IJCAI, pp. 54–59 (2005)

3. Debruyne, R., Bessière, C.: Some Practicable Filtering Techniques for the Con-
straint Satisfaction Problem. In: Proc. IJCAI, pp. 412–417 (1997)

4. Geelen, P.A.: Dual Viewpoint Heuristics for Binary Constraint Satisfaction Prob-
lems. In: Proc. ECAI’92, pp. 31–35 (1992)

5. Granvilliers, L., Benhamou, F.: RealPaver: An Interval Solver using Constraint
Satisfaction Techniques. ACM Trans. on Mathematical Software 32(1), 138–156
(2006)

6. Lebbah, Y., Michel, C., Rueher, M.: A Rigorous Global Filtering Algorithm for
Quadratic Constraints. Constraints Journal 10(1), 47–65 (2005)

7. Lhomme, O.: Consistency Tech. for Numeric CSPs. In: IJCAI, pp. 232–238 (1993)
8. Lhomme, O.: Quick Shaving. In: Proc. AAAI, pp. 411–415 (2005)
9. Min Li, C., Anbulagan: Heuristics Based on Unit Propagation for Satisfiability

Problems. In: Proc. IJCAI, pp. 366–371 (1997)
10. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University

Press, Cambridge (1990)
11. Neveu, B., Chabert, G., Trombettoni, G.: When Interval Analysis helps Interblock

Backtracking. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 390–405.
Springer, Heidelberg (2006)

12. Web page of COPRIN: www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/

benches.html

COCONUT benchs:
www.mat.univie.ac.at/∼neum/glopt/coconut/Benchmark/Benchmark.html

5 An implementation of both operators in a same solver would lead to a fair compar-
ison.

file:www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html
file:www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html
www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html

650 G. Trombettoni and G. Chabert

13. Refalo, P.: Impact-Based Search Strategies for Constraint Programming. In: Wal-
lace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

14. Régin, J.C.: A Filtering Algorithm for Constraints of Difference in CSPs. In: Proc.
AAAI, pp. 362–367 (1994)

15. Simonis, H.: Sudoku as a Constraint Problem. In: CP Workshop on Modeling and
Reformulating Constraint Satisfaction Problems, pp. 13–27 (2005)

16. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: A Modeling Language for
Global Optimization. MIT Press, Cambridge (1997)

17. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, Implementation, and Evalu-
ation of the Constraint Language CC(FD). J. Logic Programming 37(1–3), 139–164
(1994)

	Introduction
	Definitions
	CID-consistency
	A CID-Based Solving Strategy
	3B, CID and a 3BCID Hybrid Version
	A New CID-Based Splitting Strategy
	Experiments
	Benchmarks and Interval-Based Solver
	Results Obtained by CID
	Comparing CID, 3B and 3BCID
	Comparing Splitting Strategies

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

