379 research outputs found

    Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate

    Get PDF
    Observations and models have shown that continuously degassing volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. We use a global aerosol microphysics model to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial (PI) and present-day (PD) conditions. We find that volcanic degassing increases global annual mean cloud droplet number concentrations by 40% under PI conditions, but by only 10% under PD conditions. Consequently, volcanic degassing causes a global annual mean cloud albedo effect of −1.06 W m−2 in the PI era but only −0.56 W m−2 in the PD era. This non-equal effect is explained partly by the lower background aerosol concentrations in the PI era, but also because more aerosol particles are produced per unit of volcanic sulphur emission in the PI atmosphere. The higher sensitivity of the PI atmosphere to volcanic emissions has an important consequence for the anthropogenic cloud radiative forcing because the large uncertainty in volcanic emissions translates into an uncertainty in the PI baseline cloud radiative state. Assuming a −50/+100% uncertainty range in the volcanic sulphur flux, we estimate the annual mean anthropogenic cloud albedo forcing to lie between −1.16 W m−2 and −0.86 W m−2. Therefore, the volcanically induced uncertainty in the PI baseline cloud radiative state substantially adds to the already large uncertainty in the magnitude of the indirect radiative forcing of climate

    Influence of enhanced Asian NOx emissions on ozone in the upper troposphere and lower stratosphere in chemistry–climate model simulations

    Get PDF
    The Asian summer monsoon (ASM) anticyclone is the most pronounced circulation pattern in the upper troposphere and lower stratosphere (UTLS) during northern hemispheric summer. ASM convection plays an important role in efficient vertical transport from the surface to the upper-level anticyclone. In this paper we investigate the potential impact of enhanced anthropogenic nitrogen oxide (NOx) emissions on the distribution of ozone in the UTLS using the fully coupled aerosol–chemistry–climate model, ECHAM5-HAMMOZ. Ozone in the UTLS is influenced both by the convective uplift of ozone precursors and by the uplift of enhanced-NOx-induced tropospheric ozone anomalies. We performed anthropogenic NOx emission sensitivity experiments over India and China. In these simulations, covering the years 2000–2010, anthropogenic NOx emissions have been increased by 38 % over India and by 73 % over China with respect to the emission base year 2000. These emission increases are comparable to the observed linear trends of 3.8 % per year over India and 7.3 % per year over China during the period 2000 to 2010. Enhanced NOx emissions over India by 38 % and China by 73 % increase the ozone radiative forcing in the ASM anticyclone (15–40° N, 60–120° E) by 16.3 and 78.5 mW m−2 respectively. These elevated NOx emissions produce significant warming over the Tibetan Plateau and increase precipitation over India due to a strengthening of the monsoon Hadley circulation. However, increase in NOx emissions over India by 73 % (similar to the observed increase over China) results in large ozone production over the Indo-Gangetic Plain and Tibetan Plateau. The higher ozone concentrations, in turn, induce a reversed monsoon Hadley circulation and negative precipitation anomalies over India. The associated subsidence suppresses vertical transport of NOx and ozone into the ASM anticyclone

    Irrigation improvement projects in the Nile Delta : promises, challenges, surprises

    Get PDF

    Health research improves healthcare: now we have the evidence and the chance to help the WHO spread such benefits globally

    Get PDF
    There has been a dramatic increase in the body of evidence demonstrating the benefits that come from health research. In 2014, the funding bodies for higher education in the UK conducted an assessment of research using an approach termed the Research Excellence Framework (REF). As one element of the REF, universities and medical schools in the UK submitted 1,621 case studies claiming to show the impact of their health and other life sciences research conducted over the last 20 years. The recently published results show many case studies were judged positively as providing examples of the wide range and extensive nature of the benefits from such research, including the development of new treatments and screening programmes that resulted in considerable reductions in mortality and morbidity. Analysis of specific case studies yet again illustrates the international dimension of progress in health research; however, as has also long been argued, not all populations fully share the benefits. In recognition of this, in May 2013 the World Health Assembly requested the World Health Organization (WHO) to establish a Global Observatory on Health Research and Development (R&D) as part of a strategic work-plan to promote innovation, build capacity, improve access, and mobilise resources to address diseases that disproportionately affect the world’s poorest countries. As editors of Health Research Policy and Systems (HARPS), we are delighted that our journal has been invited to help inform the establishment of the WHO Global Observatory through a Call for Papers covering a range of topics relevant to the Observatory, including topics on which HARPS has published articles over the last few months, such as approaches to assessing research results, measuring expenditure data with a focus on R&D, and landscape analyses of platforms for implementing R&D. Topics related to research capacity building may also be considered. The task of establishing a Global Observatory on Health R&D to achieve the specified objectives will not be easy; nevertheless, this Call for Papers is well timed – it comes just at the point where the evidence of the benefits from health research has been considerably strengthened

    Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    Get PDF
    Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m−2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m−2 and the global mean cloud-albedo aerosol indirect effect of between −0.008 and −0.056 W m−2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates

    The climatic importance of uncertainties in regional aerosol-cloud radiative forcings over recent decades

    Get PDF
    This is the final version of the article. Available from American Meteorological Society via the DOI in this record.Regional patterns of aerosol radiative forcing are important for understanding climate change on decadal time scales. Uncertainty in aerosol forcing is likely to vary regionally and seasonally because of the short aerosol lifetime and heterogeneous emissions. Here the sensitivity of regional aerosol cloud albedo effect (CAE) forcing to 31 aerosol process parameters and emission fluxes is quantified between 1978 and 2008. The effects of parametric uncertainties on calculations of the balance of incoming and outgoing radiation are found to be spatially and temporally dependent. Regional uncertainty contributions of opposite sign cancel in global-mean forcing calculations, masking the regional importance of some parameters. Parameters that contribute little to uncertainty in Earth's global energy balance during recent decades make significant contributions to regional forcing variance. Aerosol forcing sensitivities are quantified within 11 climatically important regions, where surface temperatures are thought to influence large-scale climate effects. Substantial simulated uncertainty in CAE forcing in the eastern Pacific leaves open the possibility that apparent shifts in the mean ENSO state may result from a forced aerosol signal on multidecadal time scales. A likely negative aerosol CAE forcing in the tropical North Atlantic calls into question the relationship between Northern Hemisphere aerosol emission reductions and CAE forcing of sea surface temperatures in the main Atlantic hurricane development region on decadal time scales. Simulated CAE forcing uncertainty is large in the North Pacific, suggesting that the role of the CAE in altering Pacific tropical storm frequency and intensity is also highly uncertain.Data can be made available upon request from the corresponding author. L. A. Regayre is funded by a Doctoral Training Grant from the Natural Environment Research Council (NERC) and a CASE studentship with the Met Office Hadley Centre. B. B. B. Booth was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). K. S. Carslaw acknowledges funding from the Royal Society Wolfson Award. We acknowledge funding from NERC under AEROS and GASSP Grants NE/G006172/1 and NE/J024252/1. This work made use of the facilities of N8 HPC provided and funded by the N8 consortium and EPSRC (EP/K000225/1). The Met Office Hadley Centre is coordinated by the University of Leeds and the University of Manchester. The authors thank three anonymous reviewers for their constructive comments on this article

    Land cover change in low-warming scenarios may enhance the climate role of secondary organic aerosols

    Get PDF
    Most socioeconomic pathways compatible with the aims of the Paris Agreement include large changes to land use and land cover. The associated vegetation changes can interact with the atmosphere and climate through numerous mechanisms. One of these is emissions of biogenic volatile organic compounds (BVOCs), which may lead to the formation of secondary organic aerosols (SOAs) and atmospheric chemistry changes. Here, we use a modeling framework to explore potential future global and regional changes in SOA and tropospheric ozone following idealized, large-scale vegetation perturbations, and their resulting radiative forcing (RF). Guided by projections in low-warming scenarios, we modify crop and forest cover, separately, and in concurrence with changes in anthropogenic emissions and CO2 level. We estimate that increasing global forest cover by 30% gives a 37% higher global SOA burden, with a resulting forcing of −0.13 W m−2. The effect on tropospheric ozone is relatively small. Large SOA burden changes of up to 48% are simulated for South America and Sub-Saharan Africa. Conversely, increasing crop cover at the expense of tropical forest, yields similar changes but of opposite sign. The magnitude of these changes is strongly affected by the concurrent evolution of anthropogenic emissions. Our land cover perturbations are representative of energy crop expansion and afforestation, two key mitigation measures in 1.5 °C compatible scenarios. Our results hence indicate that depending on the role of these two in the underlying mitigation strategies, scenarios with similar long-term global temperature levels could lead to opposite effects on SOA. Combined with the complexity of factors that control SOA, this highlights the importance of including BVOC effects in further studies and assessments of climate and air quality mitigation involving the land surface
    • …
    corecore