63 research outputs found

    Fractal geometry of rocks

    No full text
    The analysis of small- and ultra-small-angle neutron scattering data for sedimentary rocks shows that the pore-rock fabric interface is a surface fractal (Ds = 2.82) over 3 orders of magnitude of the length scale and 10 orders of magnitude in intensity. The fractal dimension and scatterer size obtained from scanning electron microscopy image processing are consistent with neutron scattering data

    PDNAsite:identification of DNA-binding site from protein sequence by incorporating spatial and sequence context

    Get PDF
    Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community

    The Immune System in Stroke

    Get PDF
    Stroke represents an unresolved challenge for both developed and developing countries and has a huge socio-economic impact. Although considerable effort has been made to limit stroke incidence and improve outcome, strategies aimed at protecting injured neurons in the brain have all failed. This failure is likely to be due to both the incompleteness of modelling the disease and its causes in experimental research, and also the lack of understanding of how systemic mechanisms lead to an acute cerebrovascular event or contribute to outcome. Inflammation has been implicated in all forms of brain injury and it is now clear that immune mechanisms profoundly influence (and are responsible for the development of) risk and causation of stroke, and the outcome following the onset of cerebral ischemia. Until very recently, systemic inflammatory mechanisms, with respect to common comorbidities in stroke, have largely been ignored in experimental studies. The main aim is therefore to understand interactions between the immune system and brain injury in order to develop novel therapeutic approaches. Recent data from clinical and experimental research clearly show that systemic inflammatory diseases -such as atherosclerosis, obesity, diabetes or infection - similar to stress and advanced age, are associated with dysregulated immune responses which can profoundly contribute to cerebrovascular inflammation and injury in the central nervous system. In this review, we summarize recent advances in the field of inflammation and stroke, focusing on the challenges of translation between pre-clinical and clinical studies, and potential anti-inflammatory/immunomodulatory therapeutic approaches

    Investigating Crack Initiation and Propagation of Concrete in Restrained Shrinkage Circular/Elliptical Ring Test

    Get PDF
    The restrained ring test, which is recommended by AASHTO and ASTM, has been used for assessing the potential of early-age cracking of concrete and other cement-based materials. Recently, a novel elliptical ring test method has been proposed to replace the circular ring test method for the purpose of shortening ring test duration and observing crack initiation and propagation more conveniently. In order to explore the mechanism of this novel test method, a numerical model is developed to analyze crack initiation and propagation process in restrained concrete rings, in which the effect of concrete shrinkage is simulated by a fictitious temperature drop applied on concrete causing the same strain as that induced by shrinkage. First, an elastic analysis is conducted to obtain the circumferential stress contour of a concrete ring subject to restrained shrinkage. Combined with the fictitious crack model, a fracture mechanics method is introduced to determine crack initiation and propagation, in which crack resistance caused by cohesive force acting on fracture process zone is considered. Finite element analysis is carried out to simulate the evolution of stress intensity factor in restrained concrete rings subject to circumferential drying. Cracking age and position of a series of circular/elliptical concrete rings are obtained from numerical analyses which agree reasonably well with experimental results. It is found that the sudden drop of steel strain observed in the restrained ring test represents the onset of unstable crack propagation rather than crack initiation. The results given by the AASHTO/ASTM restrained ring test actually reflects the response of a concrete ring as a structure to external stimulation, in this case restrained concrete shrinkage.The financial support from the National Natural Science Foundation of China under the grants of NSFC 51478083 & 51421064, Engineering and Physical Sciences Research Council under the grant of EP/I031952/1, and the National Basic Research Program of China (973 Program, Grant No. 2015CB057703) is gratefully acknowledged

    Type I restriction enzymes and their relatives

    Get PDF
    Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restrictionā€“modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes

    The effects of the use of English in Polish product advertisements: Implications for English for business purposes

    No full text
    Contains fulltext : 85885.pdf (publisher's version ) (Closed access)18 p

    Distribution and immunohistochemical characteristics of cocaine- and amphetamineregulated transcript-positive nerve elements in the pelvic ganglia of the female pig

    No full text
    Cocaine- and amphetamine-regulated transcript (CART) peptides are widely expressed not only in the brain but also in numerous endocrine/neuroendocrine cells as well as in neurons of the peripheral nervous system. The present study investigated the distribution patterns of CART-like immunoreactivity in the pelvic plexus (PP) of the female pig. The co-expression of CART with principal neurotransmitter markers: choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), serotonin (5-HT) or biologically active neuropeptides: pituitary adenylate cyclase-activating polypeptide (PACAP), substance P (SP), calbindin was analyzed using double immunohistochemical stainings. Amongst neurons immunopositive to Hu C/D panneuronal marker as many as 4.1 Ā± 1.2% in right and 4.4 Ā± 1.6% in left pelvic ganglia were found to express CART. The vast majority of CART-IR ganglionic neurons were predominantly small in size and were evenly scattered throughout particular ganglia. Immunoreactivity to CART was also detected in numerous nerve terminals (which frequently formed pericellular formations around CART-negative perikarya) as well as in numerous nerve fibres within nerve branches interconnecting the unilateral pelvic ganglia. Immunohistochemistry revealed that virtually all CART-IR neurons were cholinergic in nature and CART-IR basket-like formations frequently encircled TH-positive/CART-negative perikarya. None of CART-IR ganglionic neurons showed immunoreactivity to SP, PACAP, 5-HT or calbindin. CART-IR nerve fibres ran in a close vicinity to serotonin-containing cells or faintly labelled SP-expressing neurons. On the other hand, PACAP-IR, SP-IR (but not 5-HT-positive) nerve terminals were found to run in close proximity to CART-IR neurons. Our results indicate that: 1) CART present in PP may influence the activity of pelvic ganglionic neurons/SIF cells, 2) PP should be considered as a potential source of CART-like supply to pelvic viscera and 3) functional interactions between CART and SP or PACAP are possible at the periphery
    • ā€¦
    corecore