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ABSTRACT

Type I restriction enzymes (REases) are large penta-
meric proteins with separate restriction (R), methyla-
tion (M) and DNA sequence-recognition (S) subunits.
They were the first REases to be discovered and
purified, but unlike the enormously useful Type II
REases, they have yet to find a place in the enzymatic
toolbox of molecular biologists. Type I enzymes have
been difficult to characterize, but this is changing as
genome analysis reveals their genes, and methylome
analysis reveals their recognition sequences. Several
Type I REases have been studied in detail and what
has been learned about them invites greater atten-
tion. In this article, we discuss aspects of the
biochemistry, biology and regulation of Type I
REases, and of the mechanisms that bacteriophages
and plasmids have evolved to evade them. Type I
REases have a remarkable ability to change
sequence specificity by domain shuffling and
rearrangements. We summarize the classic experi-
ments and observations that led to this discovery,
and we discuss how this ability depends on the
modular organizations of the enzymes and of their
S subunits. Finally, we describe examples of Type II
restriction–modification systems that have features
in common with Type I enzymes, with emphasis on
the varied Type IIG enzymes.

TYPE I RESTRICTION ENZYMES

Introduction

In the early 1960s, Werner Arber and Daisy Dussoix (1,2)
provided evidence that degradation and methylation of
DNA lay behind a phenomenon called ‘host-controlled

variation in bacterial viruses’, reported a decade earlier
(3–5) and reviewed by Luria (6). ‘Variation’ referred to
the observation that one cycle of growth of bacterial
viruses (also called (bacterio)phages) on certain hosts
affected the ability of the progeny phage to grow on
other bacterial hosts, by either restricting or enlarging
their host range. Unlike mutation, this change was
readily reversed, and one cycle of growth in the previous
host returned the virus to its original form. ‘Host-
controlled variation’ came to be known by the more
familiar terms, ‘restriction’ (R) and ‘modification’ (M).
It was learned that modification of the cell’s DNA by
methylation protected the DNA, whereas the absence of
modification on the phage DNA rendered it sensitive to
restriction by endonucleases. Restriction–modification
(R–M) systems of all types were investigated in the same
way, initially, by measuring the efficiency of plating (eop)
of phage on alternate bacterial hosts (2,7–10); see refer-
ences (6,11–15) for early reviews. The genes responsible
for restriction and modification were found on bacterial
chromosomes, on ‘resistance transfer factor’ plasmids and
on the chromosomes of certain temperate phage them-
selves (11,12,14–16). Their products, restriction endo-
nucleases (REases) and modification methyltransferases
(MTases) began to be purified in the late 1960s and have
been studied intensively ever since.
Differences in subunit composition, co-factor require-

ments and DNA-cleavage properties led to the early
division of REases (14,17–19) into Type I (Escherichia
coli EcoKI, EcoBI) and Type II (EcoRI, HindII).
Subsequently, Type III enzymes (EcoP1I, EcoP15I) and
the Type IV modification-dependent REases (Mcr and
Mrr) were also recognized to be distinct classes (18–20).
See Restriction Enzyme dataBASE (REBASE) (http://
rebase.neb.com) (21) and accompanying papers in this
journal. Sequencing and biochemistry have since led to
several subdivisions within the Type I and the Type II
classes, and boundaries are beginning to blur (20,22).
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In the late 1970s, a further difference between Type I
and Type II REases was demonstrated by the Linn and
Yuan laboratories. Using purified EcoBI and EcoKI, re-
spectively, they showed that Type I enzymes translocated
DNA powered by ATP hydrolysis. They reported the
formation of DNA loops visible by electron microscopy
(EM) and considered reaction intermediates. Concomitant
with a large conformational change, these enzymes
appeared to translocate the DNA while remaining
attached to their recognition sites (23,24).
Viruses and other mobile genetic elements (MGE) have

evolved multiple strategies to evade REases, including
acquiring modification from their host; synthesizing their
own MTases, or hyper-modifying their DNA by
incorporating unusual bases; synthesizing antirestriction
proteins that mimic DNA; and avoiding specific recogni-
tion target sequences (25–27). These processes enable
phages to become resistant to the REases they encounter,
and once this occurs, those REases no longer protect the
host from that particular phage. The solution to this
decline in protection over time is for cells to change
REase specificity periodically. To do this successfully,
however, the specificity of the MTase must change simul-
taneously in exactly the same way or the new REase will
restrict the improperly modified cellular DNA, and the cell
will die. Unlike conventional Type II R–M systems that
generally cannot do this, Type I R–M systems have
evolved an efficient way to change both REase and
MTase specificities harmoniously, by using a common
DNA sequence-recognition (S) subunit for both restric-
tion and modification.

Genes, families and distribution

Type I R–M systems are encoded by three genes, termed
hsd for host specificity determinant: hsdR encodes the re-
striction (R) subunit, hsdM the modification (M) subunit
and hsdS the recognition (S for specificity) subunit. The
Type I enzymes studied in most detail are EcoKI, from
the workhorse of molecular biology, E. coli K12, and the
plasmid-encoded EcoR124. The EcoKI genes are located
near those for McrBC and Mrr in a cluster called the
‘immigration control region’, a highly divergent locus
with alternative DNA segments containing Type I R–M
systems, and linked to serB in most E. coli isolates between
the yjiS and yjiA genes (28–32). Related Type I enzymes in
enteric bacteria often localize to this same region, with few
exceptions (e.g. EcoR124).
The current division of Type I enzymes into five

families, A-E, is based on complementation tests,
antibody cross-reactivity and amino acid (aa) sequence;
see accompanying paper and reviews (33–37). The
enzymes from E. coli K12 and E. coli B are the founder
members of Type IA, EcoAI of E. coli 15T� is the proto-
type of Type IB, plasmid-encoded EcoR124 is the proto-
type of Type IC, and Salmonella StySBLI and Klebsiella
KpnBI represent Type ID and IE, respectively. Further
families undoubtedly exist.
Genome sequencing over the last 15 years, coupled with

bioinformatics analysis, reveals that Type I R–M systems
are present in approximately one-half of all bacteria

and archaea. REBASE maintains a comprehensive list of
R–M components of all kinds, both characterized (i.e. bio-
chemically confirmed), putative (unconfirmed) and
decayed (disrupted aa sequence). At recent count, of
2145 sequenced bacterial and archaeal genomes in
REBASE, 1140 (53%) have at least one each of the
hsdR, M and S genes needed for a Type I system. In all,
835 genomes (39%) appear to have no hsd genes at all, and
the remaining 170 genomes (8%) have some hsd genes, but
perhaps not all. Disruptions and scrambled gene organ-
izations are common.

Among the 1140 genomes that include Type I R–M
systems are �2100 putative hsdR genes, 2200 putative
hsdM genes and 2600 putative hsdS genes—or roughly
two of each per organism. The multiplicity of systems
varies considerably though. Most genomes have only
one Type I system, but two, three or more is common,
with as many as eight in some bacteria (e.g. Desulfococcus
oleovorans). Some species ofMycoplasma have only one or
two hsdR and hsdM genes but multiple hsdS genes: e.g. 10
in Mycoplasma pneumoniae, 13 in Mycoplasma suis and a
record 22 in Mycoplasma haemofelis. In these organisms,
different hsdS genes probably cycle on and off to effect a
continuously changing defense against invaders (38,39).
The individual target recognition domains (TRDs) of S
subunits can shuffle into different combinations by
genetic rearrangements, and so the number of different
R–M specificities that these microbes can conjure up is
potentially far larger than the number of hsdS genes
they possess. Nearly 500 different specificities, and
perhaps twice that number, could emerge from 22 hsdS
genes, a remarkable defensive repertoire.

Enzyme activities

Type I R–M enzymes are pentameric proteins of com-
position 2R+2M+S. They require ATP, Mg2+ and
S-adenosylmethionine (SAM) for activity and display
both REase and MTase activities. A trimer of 2M+S
acts solely as an MTase (35,40,41). Characteristically,
Type I enzymes recognize bipartite DNA sequences
comprising two half-sequences separated by a gap—for
example, AACNNNNNNGTGC (AAC N6 GTGC)
where N=any base (Table 1). This stems from the repeti-
tive organization of the S subunit that comprises two
separate TRDs, one for recognizing each half-sequence.
Recombination between TRDs generates new sequence
specificities and is a powerful driver of Type I R–M
system diversification.

REase and translocase activities
The R subunit is essential for REase activity. It contains an
N-terminal endonuclease domain fused to a so-called
‘motor’ domain found in many other DNA and RNA pro-
cessing enzymes with translocation or helicase activity (66–
74). The R subunit contacts the M2S MTase core via the M
subunits. If neither half of the recognition sequence is
methylated, the R subunits translocate the flanking DNA
and cleave it a variable distance away (75), approximately
midway between neighboring recognition sites (76), while
the enzyme remains attached with the site. This behavior

2 Nucleic Acids Research, 2013

nineteen-seventies
-
-
-
,
-
,
 (ICR)
-
,
-
;
-
-
,
;
-
,
approximately 
,
,
,
M.
M.
,
M.
-
-
,
,
abbreviated to 
 hereafter
-
-
u


generates DNA loops visible by EM (23,24) and atomic
force microscopy (77,78). Mutations in the endonuclease
domain can prevent DNA cleavage without affecting
DNA translocation function (66).

Single-molecule studies coupled with improved bio-
chemical and biophysical methods have illuminated the

DNA translocation properties of EcoKI and EcoR124
and revealed hitherto unsuspected details about protein
dimerization and DNA looping (78). Dimerization
appears to be favored when the DNA molecule contains
two recognition sites, while DNA looping can occur in
the absence of ATP hydrolysis. This way of bringing
distant DNA regions together using complex protein
assemblies may be a common phenomenon. Magnetic
tweezers experiments have provided details of the biophys-
ical aspects of translocation, including the rate of trans-
location of DNA by the molecular motors—the R
subunits—as well as their processivity and ATP depend-
ence (79–83). These studies showed that the two motors
could work independently, and that the enzyme tracked
along the helical pitch of the DNA on torsionally con-
strained molecules. Apparently, translocation could stop
and restart by disassembly and reassembly. This finding
might be of interest to those working on the much larger
complexes that contain the related eukaryotic DNA
helicases and chromatin-remodeling proteins of the
SNF2 superfamily (67). Further studies confirmed the
model that ATP hydrolysis is coupled to bidirectional
DNA translocation, which would explain the DNA loops
seen in the EM by Bob Yuan and colleagues 25 years
earlier (24,84,85). The R subunits disengage transiently
roughly every other 500bp using ATP, but translocation
progresses �2 kb. Once translocation is blocked, either by
collision with another molecule or the presence of super-
coiled DNA, the DNA is cleaved. Also, there is in vitro
evidence for cleavage at a replication fork (86). Though the
enzyme remains attached to the DNA, it can be displaced
by other translocating enzymes such as the major recom-
bination complex of E. coli, RecBCD (84).

MTase activity
Methylation of the recognition sequence is catalyzed by
both the M2S trimer (M.EcoKI) and the R2M2S pentamer
(EcoKI), and it requires the co-factor SAM. Usually,
methylation converts one adenine in each half-sequence
to N6-methyladenine (m6A) (Table 1). Like other
MTases (87–90), M.EcoKI flips the target base out of
the DNA helix to carry out methyl transfer (91).
M.EcoKI and related Type IA enzymes are maintenance
MTases, with a preference for hemimethylated substrates
in which only one of the two half-sequences is methylated
(92). However, both the small Ral protein of phage l and
mutations in the N-terminus of the M subunit can turn
M.EcoKI into a de novo MTase (93,94), the same activity
as found for the Type IB enzyme EcoAI (46).

Enzyme structure

Atomic structures of Type I R–M enzymes have been dif-
ficult to obtain. Crystal structures of individual subunits
have been solved, but not of complexes. S subunit struc-
tures were solved in 2005 (pdb:1YF2 and 1YDX) (95,96)
and 2011 (pdb: 3OKG) (97), and M subunit structures in
2005 and 2007 (pdb:2AR0 and 2OKC; New York Center
for Structural Genomics, and Joint Center for Structural
Genomics, unpublished). These structures did not include
DNA, but models of the M.EcoKI trimer with DNA

Table 1. Characterized wild-type Type I R–M enzymes, arranged

chronologically

Enzyme Family Recognition
sequence

Me-interval Reference

EcoBI IA TGA N8 TGCT 8 (42–44)
EcoKI IA AAC N6 GTGC 8 (45)
EcoAI IB GAG N7 GTCA 9 (46,47)
StyLTIII IA GAG N6 RTAYG 8 (48)
StySPI IA AAC N6 GTRC 8 (48)
EcoDI IA TTA N7 GTCY 8 (49)
EcoDXXI IC TCA N7 RTTC 8 (50)
EcoR124I IC GAA N6 RTCG 7 (51)
EcoEI IB GAG N7 ATGC 9 (52)
CfrAI IB GCA N8 GTGG 9 (53)
EcoprrI IC CCA N7 RTGC 8 (54)
StySKI IB CGAT N7 GTTA 9 (55)
StySBLI ID CGA N6 TACC 6 (56)
NgoAV

a IC GCA N8 TGC 8 (57)
Eco377I GGA N8 ATGC 9 (58)
Eco585Ib GCC N6 TGCG ? (58)
Eco646I CCA N7 CTTC ? (58)
Eco777I GGA N6 TATC ? (58)
KpnBI IE CAAA N6 RTCA 7 (59)
KpnAI ID GAA N6 TGCC 6 (60)
StySEAI ACA N6 TYCA 6 (60)
StySGI TAAC N7 RTCG 9 (60)
Eco394I GAC N5 RTAAY 7 (61)
Eco826I GCA N6 CTGA 7 (61)
Eco851I GTCA N6 TGAY 6 (61)
Eco912I CAC N5 TGGC 6 (61)
CsaII CCAC N6 CTC 8 (62)
VbrI AGHA N7 TGAC 7 (62)
VbrII CTAG N6 RTAA 8 (62)
CjeFII CAAY N6ACT 9 (62)
CjeFIV TAAY N5 TGC 6 (62)
BceSVI TAAG N7 TGG 8 (62)
EcoGIV CCAC N8 TGAY 9 (63)
MpuII GA N7 TAY 7 (64)
SauMW2I CCAY N5 TTAA ? (65)
SauMW2II CCAY N6 TGT ? (66)
SauN315I ATCN5CCT 9 (66)
SauN315II CCAY N6 GTA 8 (66)

aThe S subunit of NgoAV is truncated, resulting in symmetric
specificity.
bNo adenine occurs in the first haf-sequence of Eco585I implying that
cytosine becomes methylated instead.
Column 1: The name of the prototype enzyme; isoschizomers are not
listed. Bold type signifies that the system is well-characterized. Column 2:
Complementation group to which the enzyme belongs, if known. Column
3: Only one strand of the recognition sequence is shown, oriented 50–30.
For the well-characterized enzymes, the sequence is shown in the orien-
tation for which the first (50) half is specified by the N-TRD of the
S subunit, and the second (30) half is specified by the C-TRD. For the
remaining systems, the TRD assignment is not known, and the orienta-
tion shown is arbitrary. The numeral in the recognition sequence indi-
cates the number of non-specific bases between the two half-sequences;
‘AAC N6 GTGC’, for example, means AACNNNNNNGTGC. Bases in
bold type indicate the positions of methylation if known, generally one
A in the 50 half-sequence and another that is the complement of the T in
the 30 half-site. Column 4: Number of base pairs between the two
methylated bases. Enzymes belonging to the same family have similar
spacing. Column 5: Publication reporting the specificity.
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(Figure 1) and with a DNA-mimic protein, Ocr, were
reported in 2009 (40) based on EM single particle recon-
structions (pdb:2Y7H and 2Y7C).
The first crystal structure of a Type I R subunit

(EcoR124) was published in 2009 [pdb: 2W00; (98,99)].
The catalytic site for DNA-cleavage in these proteins
belongs to the ‘PD-(D/E)XK’ endonuclease superfamily,
the same kind found in many Type II restriction endo-
nucleases [(100–104); Figure 2]. The motor domain
belongs to the RecA-like ATP-dependent family, a clade
of the Additional Strand Conserved E family (107), of
which the well-known AAA+ motor proteins are
another clade (108). The location of the nuclease domain
opposite the translocase domain suggests a coupling
between DNA translocation and cleavage. The crystal
structure of an N-terminal fragment of a putative Type
I R subunit from Vibrio sp. has also been reported
[pdb:3H1T; (109,110)]. It contains three globular
domains with a nucleolytic core and the ATPase site
close to the putative site for DNA-translocation.
Together, these structures provided a framework for

how the complete pentameric enzyme assembles, and
how the motor domains might translocate the DNA.
Recently, the complete structure of both the EcoKI and
EcoR124I enzymes was elucidated by EM single particle
reconstruction studies.

CONTROL OF R–M ACTIVITY

Restriction alleviation

Type I R–M systems are suppressed following DNA
damage by ultraviolet irradiation, 2-aminopurine and nali-
dixic acid, a phenomenon termed ‘restriction alleviation’
(RA) (111). Following the damage event, a cell population
that normally restricts phage to an eop of �10�5, say,
instead restricts to only �10�1. This mechanism is
presumed to protect the cell while the damage is being
repaired or during homologous recombination (112).
During this period, unmodified sites can be created in the
host chromosome, and RA prevents these from being re-
stricted. Restriction (but not modification) is also sup-
pressed following transfer of R–M genes to a new host;
that is, expression of the new genes does not lead to cleavage
of the unmodified host chromosome. Investigation of
the dynamics of appearance of restriction activity in the
transfer recipient revealed a long delay after entry of the
EcoKI hsdR, M and S genes. This delay was genetically
dependent on a host function, at first called HsdC
(113,114). Further genetic investigation demonstrated that
the delay mechanism was mediated by the ClpX chaperone
and its proteolytic form, the ClpXP complex (115).
The two sorts of RA were unified in further experi-

ments, which studied stability, by western blot, of compo-
nents of the Type IA and Type IB R–M systems (115,116).
Degradation occurs specifically when the R subunit is
assembled into a translocation-competent complex.
Mutations in any of the R subunit DEAD box motifs,
which impair ATPase activity and translocation both
in vivo and in vitro (117,118), relieve sensitivity of the R
subunit to ClpXP (119). Mutations in the endonuclease

motif, in contrast, do not relieve sensitivity to degradation
(119).

The EcoR124I Type IC R–M system is insensitive to
ClpXP-mediated control but also displays RA (120,121).
RA could result from disassembly of the pentameric
restriction complex (during endogenous RA when the
complex will be attempting to translocate on the host
chromosome) or inefficent assembly (during establishment
of RM in a new host) for this plasmid-borne system. Still
unresolved is the mechanism by which these enzymes dis-
tinguish between an invading unmodified DNA and an
unmodified new or old host. A recent article showed
that the R subunit of EcoKI (but not those of representa-
tive Type IB and IC enzymes) can be phosphorylated on
threonine. This could play a role in localization, disassem-
bly or proteolysis (122).

Antirestriction and antirestriction-modification

Antirestriction (antiR) and antirestriction–modification
(antiR–M) systems have evolved in many MGEs such as
phage, plasmids and transposons. Their activities increase
the probability that the MGE will survive the cell’s R–M
systems and initiate a successful infection. Phage T4 has the
most numerous antiR and antiR–M mechanisms
(26,27,123–125). Early work on antiR–M was carried out
by the groups of Studier at NIH, Kruger in Berlin, Bickle in
Basel (126–131) and by the groups of Belogurov and
Zavil’gel’skii in Russia; reviewed in (22,26,27,132–134).
The Wilkins laboratory in the UK solved the riddle of
control of antiR encoded by the self-transmissible IncI
plasmid: the ardA gene was transiently induced during con-
jugation by transcription from a single-stranded promoter
(135–138). The evolutionary struggle between antiR–M and
R–M has been likened to an ‘arms race’ with new mechan-
isms and counter-mechanisms developing continuously
(22,26,27,132–134,138–140). We describe examples of
these later in the text, including alteration of the methyla-
tion preference of M.EcoKI and the synthesis of antiR–M
proteins: Ocr from phage T7 (141), ArdA from transposon
Tn916 of Enterococcus faecalis (142), ArdB (143) from a
pathogenicity island of E. coli CFT073, and KlcA [an
ArdB homolog (144)] from plasmid pBP136 of Bordetella
pertussis (145).

De novo methylation
M.EcoKI and related Type IA modification enzymes are
‘maintenance’ MTases that exhibit a strong preference for
hemi-methylated recognition sites. This enables the MTase
to be highly active on replicating DNA, but very slow
to modify foreign unmodified DNA when it enters. This
property can be foiled by antirestriction activities.
Interaction with the phage lambda Ral protein converts
M.EcoKI to a ‘de novo’ methyltransferase (93,146).
Induction of ral (restriction alleviation) under the control of
an inducible promoter enhanced survival of unmodified
phage lambda 800-fold within 1min. This fast reaction sug-
gested direct interaction of the Ral protein with EcoKI
perhaps inducing a conformational change to enhancemethy-
lation over restriction (93). Mutations in the hsdM gene can
achieve the same result, thus effectively converting EcoKI
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from amaintenance to a de novoMTase in the absence of Ral
(94). Amodel (147) was proposed to explain the differences in
activities between wild-type and mutant enzymes based on
biochemical and structural data (148).

AntiR and antiR–M proteins
The Ocr, ArdA and ArdB proteins vary in their occur-
rence in nature (149–151). Ocr seems to be confined to

phage, particularly T7 and its relatives (150–153). In T7,
it is encoded by gene 0.3, the first gene to enter the E. coli
host on infection. It is synthesized in large amounts for the
first 2min of infection, during which insertion of further
T7 DNA halts (154–156). Sufficient Ocr protein is
produced in this brief period to completely inhibit the
host’s Type I enzymes, following which Ocr synthesis

Model of the M.EcoKI MTase

DNA

S subunit

M subunit 1

M subunit 2

…AACNNNNNNGTGC…
…TTGNNNNNNCACG…

Figure 1. Model of the M.EcoKI MTase (pdb file 2Y7H). The S subunit is composed of two TRDs in inverted orientations. Each TRD comprises a
globular DNA-binding domain and an alpha helical dimerization domain. The N-TRD (green) in this protein is specific for the sequence AAC (the
50-half-sequence), and the C-terminal domain (orange) is specific for GCAC (the 30 half-sequence). Zipper-like association of the helices separates the
globular domains by a fixed distance and reverses the orientation of the C-TRD, resulting in the composite recognition sequence that is bipartite:
AAC N6 GTGC. Each TRD also associates with one M subunit (identical, but shown here in different shades of blue for clarity) to form an M2S
trimer. Neither S nor M subunits bind to DNA alone, but the trimer binds specifically at the recognition sequence and catalyzes methylation of one
adenine in each half-sequence. Because the TRDs are inverted, the two M subunits have opposite orientations. Consequently, both strands of the
recognition sequence become methylated, the ‘top’ strand of the 50 half-sequence (Am6AC) and the ‘bottom’ strand of the 30 half-sequence
(GCm6AC). This enables the DNA of the host cell to be distinguished from infecting DNA during DNA replication.
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Catalytic components of Type I R-M enzymes

Adenine

N105

SAM

methyl
P106

Y108

P107

SAM

Flipped 
 adenine

M 
domain

S 
domain

S

a

E55

P49

D50

K57

H2O

R 
domain

T 
domain 1T 

domain 2

Figure 2. Catalytic components of Type I R–M enzymes. Upper figure, left: The R/T subunit of EcoR124I (pdb: 2W00). The R domain (red),
responsible for DNA cleavage, comprises the N-terminal �260 aa. It contains the common PD-D/EXK endonuclease catalytic site, composed of
D151, E165 and K167 (yellow spheres). Upper figure, right. The PD-D/EXK catalytic site of the Type II REase, MvaI (pdb:2OAA). D50 and E55
coordinate divalent metal ions (in this case two Ca2+ ions, shown as green spheres at reduced scale for clarity). The hydrolytic water molecule is
oriented by interaction with a metal ion, the general base K57, and a phosphate oxygen from the adjacent base. These interactions position a lone
pair electron orbital (purple sticks) of the water molecule for in-line nucleophilic attack on the phosphorus atom (bright yellow), initiating the DNA
cleavage reaction. Catalysis occurs in the presence of Mg2+, but not in the presence of Ca2+; hence, this structure represents the pre-cleavage
complex. Lower figure, left: The monomeric g-MTase, M.TaqI, with bound DNA (pdb: 1G38). SAM was absent in this complex, which represents
the pre-methylation complex. SAM has been added here through modeling by structural alignment with pdb:2ADM. Lower figure, right: The
catalytic NPPY of M.TaqI is composed of N105, P106, P107 and Y108. When the target adenine is flipped into the catalytic site, the hydrogens of
the 6-amino group form hydrogen bonds with the side chain amide carbonyl of N104 and the main chain carbonyl of P105. These lie below the plane
of the base and likely induce the nitrogen to switch from the planar sp2 orbital configuration it normally possesses, to the tetrahedral sp3 config-
uration (105). In this latter configuration, the lone pair orbital of nitrogen (purple stick) is appropriately positioned for in-line nucleophilic attack on
the carbon thiol (pink) of SAM, initiating the DNA methylation reaction (105,106).
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stops and the rest of the phage genome enters the cell in
safety. (In vitro, Ocr also binds to E. coli RNA polymerase
(157); whether this is relevant in vivo has not been
investigated.)

ArdA and ArdB proteins are generally encoded by
conjugative plasmids and transposons, and they are also
often the first genes to enter the recipient cell (149). As the
entering DNA is single stranded and resistant to restric-
tion, an unusual promoter is formed: the DNA of plasmid
ColIb-P9 forms a double-stranded hairpin to allow tran-
scription of ardA (135–137). Production of ArdA or ArdB
leads to rapid inhibition of the host’s Type I enzymes. This
novel transcription method may well be more common
and deserves further research. Importantly, both ardA
and ardB genes are widespread (as determined by
genomic sequencing projects) and frequently accompany
antibiotic-resistance genes. Their presence might have a
considerable impact on the rate of spread of resistance
in bacterial populations.

The structure of Ocr
Ocr is a striking example of DNA mimicry by a protein. It
is a homodimer of two 116-aa subunits (127) that interface
by a complementary fit of hydrophobic surfaces
[(141,158); pdb:1S7Z and 2Y7C; Figure 3]. The dimer is
banana shaped with a length of �7.5 nm and a general
width of 2 nm thickening to 2.5 nm at the dimer interface
(141,159,160). Each monomer contains several well-
packed alpha helices, a long loop and flexible N- and
C-termini. The narrowness of the structure means that it
has a minimal hydrophobic core, which contains a consid-
erable number of aromatic aa, perhaps akin to the
aromatic core of another DNA mimic, Qnr (161).
Despite this small core, Ocr is stable to heat and
chemical denaturation (160). Arrayed on the surface of
each monomer are 34 negatively charged aa and only 6
positive aa (�12 of each would be expected for a typical
globular protein of this size), although not all of these are
required for activity (162–164). The negative surface
charges have roughly the same spacing as the phosphate
groups on 24 bp of B-form DNA with a bend in the center,
which explains its affinity for Type I enzymes (165).

The structure of ArdA
ArdA also mimics B-form DNA in geometry and electro-
statics (166). The crystal structure shows ArdA to be a
homodimer, but it can exist as both monomer and dimer
in solution [(142); pdb:2W82; Figure 3]. The ArdA
encoded by Tn916 has 166 aa per subunit; the dimeriza-
tion interface is smaller than in Ocr. The dimer is a highly
elongated bent cylinder �15 nm long and 2 nm in diameter
along its entire length. The narrowness of the protein
again means that it has a minimal hydrophobic core, but
unlike Ocr, ArdA is not resistant to denaturation (142).
The fold of ArdA is completely different to that of Ocr
with each ArdA monomer comprising three small loosely
packed domains. The domain folds have been found in
other protein structures and comprise a mix of alpha
helices, beta strands and loops. The surface of each
monomer is covered with numerous carboxyl groups
such that the dimer mimics �42 bp of bent B-form

DNA. The domain organization and low stability of
ArdA imply structural flexibility and suggest that the
protein might mold itself to the contorted, S-shaped,
DNA-binding groove of Type I enzymes (41), with differ-
ent domains interacting with the different R, M and S
subunits (40).

The structure of ArdB
The structures of two members of the ArdB family have
been solved by crystallography [ArdB from E. coli
CFT073 (143); pdb:2WJ9; Figure 3] and nuclear
magnetic resonance spectroscopy [KlcA from B.pertussis
(145); pdb:2KMG]. The proteins are close homologs with
>30% aa sequence identity. Klc genes form part of the kor
operon involved in the regulatory network of these pro-
miscuous plasmids (144). The ArdB structures are differ-
ent from those of Ocr and ArdA, being small, rather
normal-looking, globular proteins although with a novel
polypeptide fold. They are neither elongated nor possess
significant charged patches so are unlikely to cause antiR
via DNA mimicry. KlcA is a monomer in solution, but the
ArdB structure is a dimer with two intermolecular disul-
phide bridges and a well-packed hydrophobic interface.
As the cysteine residues are not conserved, dimer-forma-
tion may not be required for activity and may not even
arise in the reducing environment of the bacterial cyto-
plasm. The novel fold of ArdB shows two alpha helices
projecting out from the protein with a smaller third helix
nearby completing a domain. This domain is then
‘cupped’ or held in the palm of a hand by another
domain comprised of helices, beta strands and loops.
The absence of conserved charged patches or a narrow
structure to allow association with a DNA-binding site
suggests a different mechanism of inhibition from ArdA
and Ocr, although it is possible that the ArdB structures
could be different when in the cytoplasm.

Effect on restriction and modification
The effectiveness of Ocr, ArdA and ArdB in inhibiting
restriction and modification by Type I enzymes has
usually been investigated in vivo by comparing the eop
of phage on restriction-proficient hosts with or without
antiR–M genes (139,141,142,145,158,167). Active antiR
enhances the number of recovered phage, and these in
turn can then be tested for modification by their eop on
restriction-proficient and -deficient strains. Quantitative
comparisons in these experiments are difficult due to
varying experimental details, but the in vivo titration
assay, in which an inducible promoter and antiR–M ex-
pression is controlled by inducer concentration, recently
introduced by the group of Zavil’gel’skii, suggests a good
way forward for quantitative comparison of antiR–M
systems (139,158,167).
The eop assays show that Ocr effectively blocks both

restriction and modification by all Type I families. This is
a direct consequence of the extremely strong binding of
Ocr to the DNA-binding groove in the MTase core (170).
ArdA and ArdB block restriction in all Type I families
but are much less effective at blocking modification
(139,141,145,158,167). This minimal anti-M activity is
due to the binding of ArdA to the MTase core being of
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similar or weaker strength than DNA binding to the core.
Although the binding is weak, it is sufficient to prevent
restriction. ArdB also shows little or no anti-M effect
in vivo, and no interaction has been observed in vitro
between ArdB and the MTase core. Furthermore,
although ArdB causes antiR in vivo, no effect could be
demonstrated in vitro on restriction. Therefore, the mech-
anism of antiR used by ArdB is indirect rather than the
binding mechanisms used by Ocr and ArdA. It would be
useful to define an active core for ArdB activity by con-
structing truncated variants of the protein.
Our understanding of antiR–M is still in its infancy.

Aside from the three systems described earlier in the
text, few others have been studied beyond their initial dis-
covery. Given their synergistic role with R–M systems in
regulating horizontal gene transfer and the ‘resistome’

(171,172), this deficiency in our knowledge needs to be
addressed.

EcoprrI, an apoptosis enzyme
An especially elaborate example of defense and counter-
defense concerns EcoprrI. The prrABD genes encode a
conventional Type IC R–M system (54). The prrC gene,
embedded in this operon, encodes a latent anticodon
nuclease (ACN) that sacrifices the host on phage infection.
PrrC is normally sequestered within the Type I enzyme
complex, but it is released to act when phage T4, which
is completely resistant to Type I REases, infects the host.
Lethal damage is inflicted on the infected cell and expres-
sion of phage proteins is inhibited, by cutting the anti-
codon loop of tRNAlys. T4 counters the DNA/RNA
restriction activity of EcoprrABCD with three dedicated

Inhibitors of Type I R-M enzymes

DNA

Ocr

ArdA

ArdB

Figure 3. Protein inhibitors of Type I R–M enzymes. Top panel: DNA model (hydrogen atoms omitted) from pdb:2Y7H displayed on the same
scale as the proteins for structural comparisons. Panel b: Ocr (pdb:1S7Z and 2Y7C) from bacteriophage T7; panel c: ArdA (pdb:2W82) from Tn916
of E. faecalis (117); panel d: ArdB (pdb:2WJ9) from a pathogenicity island of E. coli CFT073. All three proteins are homodimeric. Their subunits are
identical, but are displayed here in different colors.
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T4 proteins (173), T4 polynucleotide kinase and RNA
ligase that repair the cleaved tRNA, and Stp (174) that
inhibits the Type I activity but liberates the ACN in the
process [see (175) for review].

Interestingly, ACN appear to be involved in stress
responses in both prokaryotic and eukaryotic cells: e.g.
DNA repair defects sensitize yeast to ACN activity
(176), and angiogenin induces tRNA cleavage in mouse
cells (177). Such an ‘RNA-based innate immune system
that distinguishes self from non-self’ (178) may also be
considered programmed cell death after infection (179).

TYPE I DNA SEQUENCE SPECIFICITY

Characterization

Few Type I R–M enzymes were known to exist before the
advent of genome sequencing, and these were confined to
E. coli and close bacterial relatives. Even today, the
number of characterized Type I enzymes is small
compared with Type II enzymes (Table 1). This disparity
reflects the difficulty of identifying Type I enzymes and
determining their recognition sequences. R–M systems of
all types were studied in the same way at first, by their
effects on plating efficiencies of phages. As the enzym-
ology of restriction and modification began to be
explored in the 1970s, DNA-cleavage assays of bacterial
cell extracts largely replaced phage-plating assays. This led
to the discovery of many new Type II REases, as these
cleave DNA at fixed positions and produce discreet DNA
fragment patterns, but it had little effect on the discovery
of Type I enzymes (19). Type I REases cleave DNA at
variable positions with respect to their recognition sites,
and so they do not produce signature fragment patterns.
Consequently, they cannot be identified easily in cell
extracts, and their recognition sites are far more difficult
to map.

By 1980, only two Type I enzymes had been dis-
covered—EcoBI (42–44) and EcoKI (45)—compared
with 56 different Type II REases (180). Eight more Type
I specificities were discovered in the 1980s [versus over 100
new Type II REases (181)] and another two in the 1990s
(Table 1)—together with some remarkable variant
specificities that had arisen by chance or by design
(Table 2). Fourteen more Type I specificities were dis-
covered early in the following decade, due mainly to
work in Junichi Ryu’s laboratory based on the restriction
of sets of sequenced plasmids during transformation
(58–61), and 11 more have been added very recently
from work elsewhere (62,63,65,192). The original
systems are well-characterized for the most part, but
little is known yet about the newer ones. Characterizing
Type I enzymes would likely have remained difficult but
for a development that is poised to revolutionize this field.
Next-generation sequencing of genomic DNA provides a
rapid way of determining sequence specificity based on the
sites of methylation rather than the sites of cleavage
(61,62).

Single-Molecule Real-Time (SMRT) DNA-sequencing
instruments of the kind manufactured by Pacific
Biosciences not only distinguish the bases from one

another but also distinguish their modification states,
differentiating m6A from adenine, and m4C, hm5C and
to some extent m5C, from cytosine (64). As modification
always takes place within the recognition sequence in all
types of R–M systems, identifying the sequence contexts in
genomic DNA that contain modified bases reveals the
methylation profile of the organism—its ‘methylome’—
and the specificities of all of its active Mtases (193).
Bioinformatics analysis of the genome reveals the
MTases that are present and their likely characteristics,
and then it becomes a matter of correctly matching the
MTases to the DNA sequences methylated.
Methylation data have begun to emerge from SMRT

sequencing projects and are growing rapidly (62,63,168,
169,192). New R–M specificities of various types have
already been uncovered, and REBASE has added a new
section to track the accumulating information (http://
rebase.neb.com/rebase/rebase.charts.html>Specialized
Information> PacBio). Because multiple R–M systems as
well as solitary MTases are often present in each genome,
sub-cloning and methylome re-analysis will be needed in
many instances to confirm which specificity belongs to

Table 2. Derivative Type I R-M systems with altered specificities

Enzyme Recognition
sequence

S subunit
organization

Reference

StySB GAG N6 RTAYG [GAG]�[CRTAY]
StySP AAC N6 GTRC [AAC]�[GYAC]
StySQ AAC N6 RTAYG [AAC]�[CRTAY] (48,180–182)
StySJ GAG N6 GTRC [GAG]�[GYAC] (185)
EcoAI GAG N7 GTCA [GAG]�[TGAC]
StySKI CGAT N7 GTTA [CGAT]�[TAAC]
SKI/AI CGAT N7 GTCA [CGAT]�[TGAC] (55)
EcoR124I GAA N6 RTCG [GAA]�[CGAY]
EcoDXXI TCA N7 RTTC [TCA]��[GAAY]
EcoDR2 TCA N6 RTCG [TCA]�[CGAY] (186)
EcoRD2 GAA N6 RTTC [GAA]�[GAAY] (186)
EcoDR3 TCA N7 RTCG [TCA]��[CGAY] (186)
EcoRD3 GAA N7 RTTC [GAA]��[GAAY] (186)
EcoR124I GAA N6 RTCG [GAA]�[CGAY]
EcoR124II GAA N7 RTCG [GAA]��[CGAY] (51,187)
EcoR124I GAA N6 RTCG [GAA]�[CGAY]
EcoR124I"50 GAA N7 TTC 2[GAA] (188)
EcoDXXI TCA N7 RTTC [TCA]��[GAAY]
EcoDXXI"C TCA N8 TGA 2[TCA] (189)
EcoDXXI"N GAAYN5 RTTC 2[GAAY] (190)
EcoAI GAG N7 GTCA [GAG]�[TGAC]
EcoAI cp380 GAG N7 GTCA [TGAC]�[GAG] (191)

Column 1: Enzymes in regular type are parental; these are also listed in
Table 1. Enzymes in bold are derivatives. Column 2: The recognition
sequence is printed in the orientation for which the 50 half-sequence is
specified by the N-TRD, and the 30 half-sequence is specified by the
C-TRD. Numerals indicate the number of non-specific bases between
the two half-sites. Bold type indicates the bases known or inferred to be
methylated. Column 3: Inferred compositions of the S subunits. The
specificities of the individual TRDs are given in the order in which they
occur in the S subunit, e.g. ‘[GAG]�[CRTAY]’, indicates that the
N-TRD recognizes GAG, and the C-TRD recognizes CRTAY. ‘�’ in-
dicates that the TRDs are joined into a single protein chain. ‘��’
indicates that this linkage contains additional aa that increase their
separation. S subunits that are homodimers of a single TRD are
depicted as ‘2[GAA]’, for example, meaning that it comprises two mol-
ecules of a GAA-specific TRD. Because the orientation of the second
TRD in S subunits is inverted with respect to the first TRD, the 30 half-
sequence is always the ‘complement’ of the specificity of that TRD.
Column 4: Publication reporting the derivative.
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which system. In addition, for Type I enzymes, there is the
added task of establishing which TRD of the two present in
each S subunit recognizes which half of its recognition
sequence. Amino acid sequence comparisons combined
with experiments of the kinds described later in the text
suggest ways in which these latter assignments can be
made. Structural similarities between crystallized Type I S
and M subunits (40,95,96), �-class adenine MTases (105),
and Type IIG RM enzymes (194,195), coupled with our
growing understanding of how these proteins recognize
DNA specifically (196), make it plausible that by the end
of this decade, we will be able to ‘decode’ the specificities of
many Type I enzymes by simply inspecting the aa sequences
of their S subunits.

Type I S subunits

The S subunits of Type I enzymes are responsible for
DNA sequence recognition. They have a duplicated or-
ganization comprising two TRDs in tandem (Figure 4).
Each TRD specifies one half of the bi-partite recognition
sequence. The TRDs consist of a globular specificity
domain (S) and an alpha-helical, ‘dimerization’ domain
(D). The TRDs occur as direct repeats in the linear aa
sequence, but they assume inverted orientations in the
folded protein as the helices associate (‘dimerize’) in anti-
parallel to make a coiled-coil ‘leucine-zipper’ (Figure 5). In
simplest form, the N-terminal TRD (N-TRD) of the S
subunit has the composition S1-D1, the C-terminal TRD
(C-TRD) has the composition S2-D2, and the entire S
subunit has the composition S1-D1�S2-D2. In some
Type I families, circular permutation of this organization
alters the positions of these domains.

Specificity changes

TRD exchanges
The structure of S subunits enables the specificities of
Type I R-M systems to change spontaneously and
robustly. The first observation of such a change was
reported in 1976. Using phage transduction to transfer
chromosomal DNA from a strain of Salmonella that ex-
pressed the Type I SP system (now StySPI) to a derivative
that expressed the SB system (now StyLTIII), a
transductant was recovered that expressed a novel specifi-
city, ‘SQ’ (182). With considerable insight, the authors
attributed this new system to a genetic cross-over in the
middle of the parental hsdS genes.
Heteroduplex analysis of the hsdS genes showed the

same organization as other members of the EcoKI
family (197), consisting of an N-terminal variable region
(=S1), a central conserved region (=D1), a second
variable region (=S2) and another conserved region
(=D2) at the C-terminus. The SQ hsdS gene was a
hybrid consisting of the N-TRD of the SP gene joined
to the C-TRD of the SB gene (183,184). Independently,
the recognition sequence of StySQ was determined and
also found to be a hybrid comprising the 50 half-site of
SP and the 30 half-site of SB (Table 2) (48,198).
These experiments suggested strongly that specificity

was determined by the variable regions of the S
subunits, and that each specified one-half of the

recognition sequence independently of the other. The
finding that discrete protein domains recognized discrete
DNA sequences was a revelation at the time and marked a
significant advance in our understanding of how proteins
interact with DNA. To complete matters, the reciprocal
hybrid was intentionally created by genetic recombination
and was shown to have the reciprocal specificity. In this
system, ‘StySJ’, the N-TRD came from SB, and the
C-TRD from SP, and as predicted, its specificity
combined the 50 half-site of SB with the 30 half-site of
SP (Table 2) (185). The nucleotide sequences of the
parental and hybrid S genes confirmed their structures
and showed that crossing-over had occurred in a 130-nt
stretch of near sequence identity that we now know
encodes the first of the two dimerization helices (184,185).

StySB and StySP belong to the Type IA family, but
domain shuffling is not confined to enzymes of this
group. The S subunits of other Type I families also have
a tandemly repeated organization of alternating specificity
and dimerization domains and are similarly suited to
exchange these by recombination. A hybrid S subunit con-
structed in vitro by joining the N-TRD of StySKI to the
C-TRD of EcoAI—both members of the Type IB
family—displayed a hybrid specificity and enabled the
specificities of the individual domains to be assigned
(55). Likewise, reciprocal hybrids between the Type IC
enzymes EcoR124I and EcoDXXI were constructed and
shown to possess the expected hybrid specificities (Table 2)
(186). There are no reports of hybrids between members of
different Type I families, but there are indications that this
occurs in nature, such as the N-TRDs of StyLTIII and
EcoEI (55).

Gap length changes
Enzymes of the Type IC family also change specificity by
unequal crossing-over at a short sequence-repeat in D1,
the first of two helices that connect the DNA-binding
domains. The length of these helices determines the sep-
aration between the two specificity domains (Figure 4),
and this in turn determines the gap in the recognition
sequence—or more precisely, the separation between the
two bases that becomes methylated. Studies in several
laboratories showed that EcoR124I and a variant,
EcoR124II, recognize the same DNA sequence half-sites,
but differ in how far they are apart: EcoR124I is specific
for a gap of 6 bp (GAA N6 RTCG), and EcoR124II is
specific for a gap of 7 bp (GAA N7 RTCG) (187,199–201).
This change was found to depend on a 12 bp sequence in
conserved domain D1 that was repeated twice in
EcoR124I but three times in EcoR124II (51,187,201).
The repeat codes for Thr-Ala-Glu-Leu (TAEL)—just
over one alpha helical turn—and the extra repeat in
EcoR124II moves the two S domains 0.34 nm further
apart and rotates them by 36 degrees, similar to the
offset between adjacent bp in duplex DNA (187). Two
other enzymes, EcoDXXI and EcoPrrI, also contain
three TAEL repeats in D1, and this appears to be the
optimum number based on aa sequence alignments
(190). During the construction of hybrids between
EcoR124I and EcoDXXI, the number of TAEL repeats
was also changed, and the hybrid recognition sequences
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were found to change in precisely the manner predicted
(Table 2) (186).

The crystal structures of putative S subunits show that
the alpha helices encoded by the dimerization domains
interconnect to form an antiparallel coiled coil (95–97).

Amino acid side chains down their lengths interlock like
tines of a zipper and form a hydrophobic core that holds
the two helices together (Figure 5). Addition or loss of a
turn in one helix but not in the other, due to a change in
the number of TAEL repeats, must change the register

Structure of the Type I S subunit

  1 MFYKEENFKK TEIGEIPEDW EIVELKDVCK KIKAGGTPKT SVEEYYKNGT IPFVKIEDIT

 61 NSNKYLTNTK IKITEEGLNN SNAWIVPKNS VLFAMYGSIG ETAINKIEVA TNQAILGIIP

121 KDNILESEFL YYILAKNKNY YSKLGMQTTQ KNLNAQIVKS FKIPLPPLEE QKQIAKILTK

181 IDEGIEIIEK SINKLERIKK GLMHKLLTKG IGHSRFKKSE IGEIPEDWEV FEIKDIFEVK

241 TGTTPSTKKS EYWENGEINW ITPLDLSRLN EKIYIGSSER KVTKIALEKC NLNLIPKGSI

301 IISTRAPVGY VAVLTVESTF NQGCKGLFQK NNDSVNTEFY AYYLKFKKNL LENLSGGSTF

361 KELSKSMLEN FKIPLPPLEE QKQIAKILSS VDKSIELKKQ KKEKLQRMKK KIMELLLTGK

421 VRVKT

S1 S2D1 D2

N-TRD C-TRD

Figure 4. Structure of the Type I S subunit (pdb:1YF2). The recognition sequence of this protein, S-MjaXI, from Methanocaldococcus (formerly
Methanococcus) jannaschii is not known. It is closely related to the EcoKI-family (Type IA) of enzymes depicted in Figure 1. The upper diagram
shows the domain organization of the protein; arrows represent DNA-binding domains, and curly lines represent dimerization alpha helices. The aa
sequence of the protein is shown below, with the domains in corresponding colors. Below this are three views of the structure, from three perpen-
dicular directions, ‘sideways’, ‘end-on’, and ‘above’. The panels on the left depict the protein; those on the right depict the protein with modeled
DNA positioned approximately as it is bound. The DNA was taken from pdb:2Y7H and transferred by structural alignment of the S subunits.
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between of the aa in the zipper because, if it did not, the
gap would not change. How this perturbation is
accommodated is not clear. Introducing a compensatory
change in the other helix to restore the original register
would be worth investigating.

Homodimeric S subunits
In the changes described earlier in the text, the order of the
specificity domains remained the same, one N-TRD being
swapped for another N-TRD, and so on. Experiments in
the 1990’s showed that the order makes little biological
difference because, as they adopt inverse orientations in
the folded protein, the S subunit is rotationally symmetric.

This is due to the antiparallel nature of the coiled coil: it
both separates the TRDs and inverts their orientations. In
hindsight, a structure with rotational symmetry was only
to be expected: the S subunit must orient the two M
subunits to methylate different strands of the recognition
sequence so that both can become methylated. As the
strands of DNA have opposite orientations, the M
subunits must also have opposite orientations, and
because they derive their orientations from their associ-
ation with the S domains, these must have opposite orien-
tations as well. That this was indeed the case emerged
from experiments with EcoR124I.

Dimerization helices of Type I S subunits

D1 …PLPPLEEQKQIAKILTKIDEGIEIIEKSINKLERIKKGLMHKLLTKGIGHSR…
◊

*TKVRVKGTLLLEMIKKKMRQLKEKKQKKLEISKDVSSLIKAIQKQEELPPLP… D2 (reversed)

D1 …PLPPLEEQKQIAKILTKIDEGIEIIEKSINKLERIKKGLMHKLLTKGIGHSR…
|||||||||||||||: :| ||:..◊ . ||:| || :| ||| :

D2 …PLPPLEEQKQIAKILSSVDKSIELKKQKKEKLQRMKKKIMELLLTGKVRVKT*

N C 

D1 

N C 

D2 

D1 

D2 D1 

D2 

Figure 5. Dimerization helices of Type I S subunits. Upper diagram: aa sequence alignment of the dimerization helices of S-MjaXI (pdb:1YF2; D1
and D2 in Figure 3) show that they are similar but not identical (top). The proline-rich motif that precedes each helix (IPLPP) is a hallmark of Type
I S subunits and likely plays a structural role establishing the correct architectural relationship between the S and D domains. The helices interact in
opposite orientations to form an antiparallel coiled-coil (bottom). Adjacent pairs of aa (red and blue) form the dimerization interface and occur with
the 4-3-4-3 . . . spacing characteristic of leucine zippers. Middle diagram: Exposed dimerization surfaces of two helices. Side chains of red aa point ‘up’
toward the bound DNA, and those of blue aa point ‘down’. To form the coiled coil, D1 must be rotated 180 degrees around the vertical axis and
docked against the surface of D2 shown. Lower diagram: Within the coiled coil, red aa from one helix interdigitate with red aa from the other helix,
forming the ‘upper’ surface of the coiled coil, the surface closest to the bound DNA (left). And blue aa from one helix inter-digitate with blue aa
from the other helix to form the ‘lower’ surface on the other side (red). Within the coiled-coiled, red side chains from one helix stack on blue side
chains from the other helix in an alternating pattern. At this interface, the helices have complimentary topologies such that a ridge or bump in one is
accommodated by a valley or depression in the other, resulting in a close hydrophobic fit.
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A mutant of EcoR124I was isolated, HsdS(�50), that
lacked �160 aa from the C-terminus of the S subunit,
including most of the C-TRD. This mutant was active,
and it was found to have a new specificity, GAA N7
TTC, that was a palindrome of the sequence recognized
by the N-TRD (Table 2) (188). The fact that this sequence
was bipartite, like regular Type I enzymes, indicated that a
second molecule of the N-TRD was substituting for the
missing C-TRD, and that the two TRDs were therefore
interchangeable. It also indicated that the TRDs have
inverted orientations, and that they need not be joined
in a continuous polypeptide chain to function together.
Perhaps more surprising is that the helices forming
the coiled coil can also substitute for each other. D1
forms an antiparallel zipper with D2 in the normal
‘heterodimeric’ S subunit. In HsdS(�50), D1 evidently
zippers with itself, and does so in a conservative way
that preserves the parental 7-nt separation between
methylated adenines. Considerable sequence similarity
exists between the dimerization domains of Type IC S
subunits, perhaps explaining why one helix can satisfac-
torily replace the other.

A comparable truncation arose by insertion of trans-
poson Tn5 into the C-TRD of the EcoDXXI S subunit,
and likewise resulted in a homodimer specific for a palin-
drome of the N-TRD specificity (Table 2) (189). The separ-
ation between the methylated bases—8nt in this case due to
the presence of a third TAEL repeat—was also preserved.
To test whether the C-TRD could substitute for the N-TRD
in the reverse scenario, the N-terminus of the EcoDXXI S
subunit was intentionally deleted. This mutant behaved in
the same way as the other homodimers and recognized an
interrupted palindrome of the C-TRD specificity (190).
When the N- and C-terminal-truncated S genes were co-
expressed to create a mixture, wild-type EcoDXXI activity
was regenerated, confirming further that the two TRDs
need not be joined into a single protein chain to work
together. That they are joined in all of the characterized
Type I systems and most of the putative ones, too,
suggests that fusion nevertheless confers a selective advan-
tage. Fusion fixes the TRD stoichiometry to 1:1 and limits
the combinatorial pairing possibilities when multiple TRDs
are present in the same cell.

One natural Type I system has been found that has a
palindromic specificity: NgoAV (Table 1). The S gene of
this system is fragmented into several open reading frames
(ORFs). The first ORF encodes a complete N-TRD similar
in size and composition to the EcoR124I(�50) and
EcoDXXI truncations described earlier in the text, and it
evidently behaves in the same way. The C-terminal domain
is incomplete and inactive (57). EcoR124I, EcoDXXI and
NgoAV all belong to the Type IC family. No equivalent
homodimers have been reported for enzymes from other
Type I families. The D1 and D2 helical domains of Type
IA S subunits have little sequence similarity, suggesting
they might not be able to substitute for each other as can
those of the Type IC S subunits.

Circular permutation of S subunits
Within Type I families, the S subunits have a consistent
organization, but between families, they are circular

permutations of one another. For Type IA S subunits,
the domain order is S1-D1-S2-D2, whereas for Type IB
S subunits, it is D2-S1-D1-S2. The Type IC S subunits are
in-between, beginning and ending within D2. These forms
differ in where, within a circle of alternating specificity and
dimerization domains, the N- and C-termini occur. That
these forms are structurally equivalent was demonstrated
by circularly permuting the EcoAI S subunit, a Type IB
family member (191). In one permutation, most of the
N-terminal conserved domain was moved to the
C-terminus, mimicking the organization of Type IC S
subunits. This construct, cp91, was active in both methy-
lation and restriction. From the equivalent position in the
central conserved region, a second permutation was con-
structed, cp380, in which the entire N-terminal half of the
protein was switched to the C-terminus, reversing the
order of the TRDs. This construct, a Type IC mimic in
reverse, was active in only methylation but, tellingly, it
displayed the same EcoAI specificity as its parent, con-
firming the inverted orientations of the two domains
that make up the S subunit. Two other permutations,
one a mimic of Type IA S subunits, the other a Type IB
mimic but reversed, proved to be inactive (191). Evidently,
the permuted forms are not necessarily functionally
equivalent. The S domain order seems not to matter in-
ternally, but the positions of the N- and C-termini
do matter, perhaps affecting proper folding or interaction
with the M and R subunits or resistance to proteases
(191).
Indications that S domains switch order in nature can

be inferred from aa sequence comparisons. The first spe-
cificity domain of StySKI (S1), for example, specifies
CGAT. A similar domain occupies the second position
(S2) in EcoR124I where it specifies a similar sequence
CGAY (55). Other possible examples can be found
among the uncharacterized systems in GenBank and
REBASE (202).

Recognition sequence orientations
Most of the natural and derivative Type I specificities are
asymmetric, reflecting the ‘heterodimeric’ composition of
the S subunit. Because of this asymmetry, Type I recogni-
tion sequences can be written in two ways depending on
which strand is referenced. EcoKI, for example, can be
written as ‘AAC N6 GTGC’ or as ‘GCAC N6 GTT’.
Ideally, these sequences should all be oriented in the
same, biologically meaningful, way where the 50 half-site
is specified by the N-TRD of the S subunit, and the 30-half
site is specified by the C-TRD. However, deciding which
strand should be used for the sequence in any instance
requires first knowing the specificities of those TRDs;
without this information, the orientation is arbitrary.
Nonetheless, because the TRDs have inverted orientations
in the S subunit, the specificity of the C-TRD is not the
sequence of the second half-site of the recognition
sequence, but rather its complement. This becomes im-
portant when comparing the specificities of TRDs that
occupy different positions, such as the N-TRD of
StySKI and the C-TRD of EcoR124I, referred to earlier
in the text (55).
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RELATIVES OF TYPE I SYSTEMS

Type I systems are large complex R–M enzymes, which at
first encounter can be puzzling. Why three subunits? Why
is the S subunit internally duplicated while the other
subunits are not? Why is the stoichiometry 1S:2M:2R?
This organization begins to make sense when Type I
enzymes are viewed from the perspective of variations
on a theme, or more accurately variations on two
themes, one being the inviolable necessity to protectively
modify both DNA strands of the recognition sequence,
and the other being the benefit derived from coupling R
and M activities to the same sequence-specificity determin-
ant. Type I enzymes represent only one of many variations
on these themes, albeit a prominent one.

Classes of MTases

Three major classes of amino-MTases occur in prokary-
otes, termed alpha, beta and gamma (203,204). Members
of all three classes catalyze the transfer of a methyl group
from SAM to the exocyclic amino group of adenine,
forming m6A. Many members of the a and b classes
methylate the exocyclic amino group of cytosine instead
of adenine, to form m4C. MTases of the � class methylate
mainly adenine, and only rarely [e.g. the unusual
M.NgoMXV and its homologs (205,206)] methylate
cytosine instead. A further major class of MTases occurs
in both prokaryotes and eukaryotes—the m5C-MTases.
These exclusively methylate carbon-5 of the cytosine ring
to form 5-methylcytosine (m5C), and they are catalytically
distinct from the amino-MTases. Bioinformatics analysis
suggests that additional kinds of amino-MTases might
exist, representing minor classes (204). The m4C-specific
MTase M.MwoI, for example, has been proposed to be
a member of the delta class based on differences with
M.SfiI (207), which is a b-class m4C-MTase, and
M.TvoORF1413P has been proposed to be member of
the zeta group (208).

Gamma-class MTases

Gamma-class MTases are the most diverse of the three
major amino-MTase classes. They comprise a 250–
450-aa catalytic domain and a sequence-specificity
domain that is either fused to form the C-terminus of a
single protein (M�S) or is present as a separate subunit
(M+S). A curious mechanistic difference distinguishes
these groups in that the �-MTases extract the base to be
methylated from one DNA strand, whereas the a� and
b-MTases extract it from the other strand. This difference
can be seen by comparing the DNA co-crystal structure of
the �-MTase M.TaqI (pdb:1G38) (105), for example, with
that of the a-MTase T4Dam (pdb:1YFL) (209). Type
I enzymes belong to the �-class, and a consistent strand-
specificity is evident in their recognition sequences.
Invariably, the base that becomes methylated in the 50

half-sequence is located in the ‘top’ strand, and the base
that becomes methylated in the 30 half-sequence is located
in the ‘bottom’ strand.
In aa sequence alignments of �-MTases, two motifs

stand out: motif I, which forms the SAM binding site,

and motif IV, which is typically Asn-Pro-Pro-aromatic
[i.e. NPP(Y/F/W)] and forms the catalytic site for
methyl transfer. The four catalytic aa are located in a
slot in the surface of the protein into which the target
base flips before methyl transfer. The aromatic aa stacks
with the flipped base, compensating for the loss of DNA
base stacking (210), and the exocyclic amino group forms
two hydrogen bonds with the protein, compensating for
the loss of the Watson–Crick base-pairing hydrogen
bonds (105,106) (Figure 2). Methyl transfer occurs
directly, without formation of a covalent protein–DNA
intermediate such as occurs in the m5C-MTases.

Gamma-class MTases form the M2S core of Type I R–
M systems, and also the MTase components of many
Type II R–M systems. Consequently, they represent an
evolutionary bridge between these two types of R–M
systems (Figure 6). We discuss later in the text some of
the varied organizations in which the �-MTases occur.

Monomeric c-MTases
M.TaqI is a typical �-MTase. It is a simple monomer of
�420 aa comprising an N-terminal catalytic domain (245
aa) connected to a C-terminal specificity domain (165 aa)
by a 10-aa linker (Figure 2). M.TaqI is specific for the
sequence TCGA. As this sequence is symmetric, M.TaqI
can bind to it in either orientation and methylate both of
the DNA strands, first one and then the other. This
enables M.TaqI to serve as the sole modification compo-
nent of the Type II TaqI R–M system. M.SalI, M.PstI,
M.HincII and many other �-MTases function in the same
way in their respective Type II systems (Table 3). With the
recent, and unpublished, exception of MmeI, M.TaqI is
the only �-MTase whose crystal structure has been solved
bound to DNA (105,211,212).

DoubleMTases
Many MTases are specific for sequences that are not sym-
metric. These enzymes can bind to their recognition
sequence in one orientation only, and consequently they
can methylate only one DNA strand. Such MTases can
nevertheless participate in R–M systems by partnering
with a complementary MTase that methylates the other
strand. Such MTase partnerships comprise the modifica-
tion components of most Type IIS R–M systems. For
example, in the Eco31I/BsaI R–M systems, the modifica-
tion component consists of a �-MTase partnered with a
separate m5C-MTase. In the related Esp3I/BsmBI R-M
systems, the modification component is a fusion of a
�-MTase and an m5C-MTase (213,214). In the BssSI
and BseRI systems, the modification components are
fusions of �-MTases and m4C-MTases (Table 3).

Homodimeric c-MTases
An alternative way in which �-MTases with asymmetric
specificities participate in R–M systems is through dimer-
ization (215). Instead of partnering with a complementary
MTase, these pair with a second molecule in opposite
orientation, achieving similar results. These homodimeric
MTases act only in this paired state, and their recognition
sequences are interrupted palindromes—inverted repeats
of the asymmetric specificity separated by a gap. The
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modification enzymes of most of the Type II R–M systems
with bipartite recognition sequences are �-MTases that
likely act in this way, including M.XmnI, M.DrdI and
M.XcmI (Table 3; Figure 6). No proteins of this kind
have been crystallized, and so their structures remain
unproven, but their C-terminal specificity domains

resemble TRDs of Type I S subunits, including motifs
suggestive of coiled-coil dimerization helices.

‘Type 1½’ MTases
The relationship between Type II R–M systems and Type
I MTases is even closer for enzymes such as M.BsaBI,

Organizations of gamma-class modification MTases
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Figure 6. Organizations of gamma-class modification MTases. g-MTases catalyze transfer of a methyl group from SAM to the exocyclic amino group of
adenine (or in rare cases, cytosine) at specific target sequences in duplex DNA. Their organizations vary depending on whether they methylate both
DNA strands, or only one, and whether they cleave the DNA instead if the sequence is completely unmodified. At minimum, g-MTases comprise an M
component for base flipping and methyl transfer (blue oblongs), and an S component for sequence-recognition (green and orange ovals). These can be
separate subunits or discrete domains. S components can function individually, or as inverted pairs that associate through antiparallel dimerization
helices. The members of such pairs can be identical, in which case the structure is homodimeric, or they can differ, in which case the structure is
functionally heterodimeric albeit usually connected into a single protein chain. Type I and Type IIG R–M enzymes are g-MTases that also restrict DNA.
For Type I enzymes, a supplementary R/T subunit (large red ovals) catalyzes endonuclease and DNA-translocase activities. For Type IIG enzymes, an R
domain (red triangle) is permanently present at the N-terminus. The latter combine with S components in configurations that mirror those of the
monofunctional g-MTases. The figure is not exhaustive; it depicts only the commonest variants of g-MTases but reveals a close evolutionary connection
between Type I R–M systems and certain Type II R–M systems. An example of each organization is given in parentheses.
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M.PshAI and M.AhdI (216). These consist of separate M
and S subunits rather than composite M�S chains, and
they are close natural equivalents of the EcoR124I" and
EcoDXXI" mutants described earlier (Tables 2 and 3;
Figure 6). M.AhdI has the composition 2M+2S (216).
Small-angle neutron scattering shows that its structure is
similar to that modeled for Type I MTases (217). Dubbed
‘Type 1½’ MTases, these enzymes are intermediate
between typical Type I and typical Type II �-MTases,
and they likely represent the ancestral form from which
contemporary Type I enzymes evolved by fusion of previ-
ously separate TRDs. Finally, the modification compo-
nent of the BstXI system is not just closely related to
Type I MTases, it appears to be one. M.BstXI comprises
separate M and S subunits, but unlike the S subunits of
Type 1½ MTases, which are single TRDs, the BstXI S
subunit has a duplicated organization with two TRDs.
These TRDs are similar in aa sequence but not identical,
and evidently, they recognize the same half-sequence,
CCA, resulting in a recognition sequence that is symmetric
overall (Table 3).

Type IIG R–M enzymes

Type IIG enzymes [also termed Type IIC; (20)] are
�-MTases with N-terminal DNA-cleavage domains
(Table 4; Figure 6). They are bi-functional R and M

enzymes that cleave at fixed distances from their recogni-
tion sequences, one or two turns of the helix away. When
first discovered, they were so distinct from other Type II
REases that they were assigned to a new class, ‘Type IV’
(218). Subsequent agreement to classify all REases that
cut at fixed positions as ‘Type II’, regardless of phylogeny,
led to their being re-designated ‘Type IIG’, and ‘Type IV’
was assigned to the modification-dependent enzymes
instead (20). Type IIG enzymes are widespread in
bacteria and archaea. They are less common than Type I
enzymes but more diverse and occurring in several distinct
organizations (Table 4). Type IIG enzymes are present in
833 of 2145 sequenced genomes in REBASE, or roughly
40%. In all, 1779 systems are distributed among these
genomes with an average multiplicity of two per
genome. Most genomes have only one or two Type IIG
systems but some have many, and strains of Borrelia
burgdorferi, the agent of tick-borne Lyme disease, have
up to an astonishing 20!

The DNA-cleavage domains of Type IIG enzymes
comprise approximately the N-terminal 200 aa and
belong primarily to the ‘PD-(D/E)XK’ family of endo-
nucleases, the same as found in Type I R subunits, and
the commonest among the Type IIP REases. The Asp and
Glu residues of this motif, in combination with a phos-
phate oxygen and water molecules, coordinate one or two
divalent metal ions, typically magnesium or manganese.
These ions are essential for catalysis and are thought to
counter the build up of negative charge on the phosphorus
during the transition state. They might also induce a
positive charge on the phosphorus atom before catalysis.
The Lys acts as a general base by deprotonating a
structured water molecule, producing the hydroxide ion
that attacks the phosphorus (Figure 2). A single catalytic
site is present in Type IIG R domains, and cleavage of
duplex DNA likely involves transient dimerization
between neighboring enzyme molecules. The crystal struc-
ture of only one Type IIG enzyme has been published:
BpuSI (GGGAC 10/14; see footnote to Table 4 for con-
vention) (194). The cleavage domain of BpuSI resembles
the well-characterized C-terminal cleavage domain of the
Type IIS enzyme, R.FokI, and it cleaves DNA with the
same staggered geometry, producing 4-base 50-overhangs
(219,220). BpuSI is unusual in this regard, as most Type
IIG enzymes create 2-base 30-overhangs, indicating that
their catalytic sites cleave across the minor groove of
DNA rather than across the major groove. BpuSI was
crystallized without DNA, and comparison with M.TaqI
indicates that it must undergo significant structural re-
arrangements to bind to its recognition sequence and
effect catalysis (194).

Monomeric Type IIG enzymes: Eco57I
Eco57I (CTGAAG 16/14) was the first member of this
new class to be characterized (218). Its large size (997
aa; 117 kDa) is typical for these enzymes and reflects
their composite nature of three joined domains, R, M
and S (Figure 6). The recognition sequence of Eco57I is
asymmetric but continuous (Table 4). The enzyme methy-
lates only one strand and cleaves on only one side,
indicating that it binds to the sequence as a monomer in

Table 3. Varied organizations of �-MTases found in Type II R–M

systems

Enzyme Recognition
sequence

Enzyme
composition

M.TaqI TCGA �M�[TCGA]
M.SalI GTCGAC �M�[GTCGAC]
M.HincII GTYRAC �M�[GTYRAC]
M.PstI CTGCAG �M�[CTGCAG]
M.Eco57I CTGAAG �M�[CTNNAG]
M1.Eco31I GGTCTC �M�[GAGACC]
M.Esp3I CGTCTC �M�[GAGACG]�m5C-MTase
M.BseRI GAGGAG m4C-MTase��M�[GAGGAG]
M.XmnI GAA N4 TTC 2�M�[GAA]
M.DrdI GAC N6 GTC 2�M�[GAC]
M.XcmI CCA N9 TGG 2�M�[CCA]
M.BsaBI GAT N4 ATC 2�M+2[GAT]
M.PshAI GAC N4 GTC 2�M+2[GAC]
M.AhdI GAC N5 GTC 2�M+2[GAC]
M.BstXI CCA N6 TGG 2�M+[CCA]�[CCA]

Differences occur in the number of catalytic domains/subunits (�M),
the number of specificity domains/subunits (S) and in their linkage:
whether they are separate proteins (+) or joined into a continuous
protein chain (�) Column 1: MTases are differentiated from other
components of R–M systems by the prefix ‘M.’. Column 2: Numerals
within the sequence indicate the number of non-specific bases between
the two half-sequences. Bold type indicates the bases known or inferred
to be methylated. ‘A’ signifies that the adenine shown is methylated,
and ‘T’ signifies that the complementary adenine on the other strand is
methylated. Most of these enzymes methylate both DNA strands.
Column 3: Domain/subunit composition of the MTase. ‘+’ signifies
the components are separate subunits, ‘�’ signifies they are covalently
joined. The specificity of the TRD is given in square brackets. ‘[GAG]’
means that the TRD recognizes GAG and methylates the A. Some
enzymes comprise two MTases fused together; in these cases,
the presence of the other MTase is indicated by ‘m4C-MTase’ or
‘m5C-MTase’.
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one orientation only. Requisite methylation of the other
strand is accomplished by a separate MTase, M.Eco57I,
also a �-MTase (218). This latter enzyme has a degenerate
specificity (CTNNAG) enabling it to methylate both
strands of the sequence, the same A in the top strand
methylated by Eco57I, and the sole A in the bottom
strand (Table 4). The need for an accompanying MTase
confines the evolutionary diversification that Eco57I can
undergo to just the central 2 bp. Related enzymes with
specificity differences at these positions are known, but
they are few in number.

The crystallized BpuSI also acts as a monomer and
methylates the single A in the top strand. Two additional
MTases accompany this enzyme: a separate �-MTase that
methylates the same adenine, and an m5C-MTase that
methylates a cytosine in the bottom strand. In the BseRI
Type IIG system, the accompanying modification enzyme
is a fusion of an m4C-MTase joined to a �-MTase
(Table 4) (221). In all of these monomeric Type IIG
systems, the accompanying MTases methylate both
DNA strands, hinting that the intrinsic methylation
activity of the R–M enzymes themselves might play a
role other than protective modification.

Multimeric Type IIG enzymes: BcgI
BcgI (10/12 CGA N6 TGC 12/10) was discovered shortly
after Eco57I and has the novel property of cleaving on
both sides of its recognition sequence, releasing a small

fragment containing the recognition sequence at every
site it cuts (222). BcgI comprises two proteins, an RM
subunit and an S subunit (Figure 6), and it represents a
trimmed-down fixed-cleaving version of Type I enzymes
(223–225). More enzymes of this kind, also termed Type
IIB (226), have been discovered and characterized
including BaeI, CspCI, BsaXI, SdeOSI and NgoAVIII
(227), but they are far less common than Type I
enzymes (Table 4). The gap between the two half-sites of
their recognition sequences varies, as also does the ‘reach’
to the cleavage site. However, if the methylated bases are
taken as the reference points rather than the boundaries of
the half-sites, then bi-lateral symmetry emerges reflecting
the fact that the same RM subunit catalyzes the reactions
on both sides.
Both subunits of BcgI-like enzymes (Type IIB) are

required for cleavage activity and for methylation
activity. The subunit stoichiometry is 2RM:1S (223), mir-
roring the 2M:1S stoichiometry of Type I MTases. The S
subunits, though generally smaller than Type I S subunits,
appear to have a similar organization of tandemly
repeated specificity and dimerization domains. Unlike
the monomeric Type IIG enzymes described in the
previous section, BcgI-like enzymes protectively modify
both strands of their recognition sequence without the
need for accompanying MTases. The cleavage domain of
the RM subunits contains only one catalytic site, and
double-strand cleavage likely requires transient

Table 4. Varied organizations of Type IIG R-M enzymes

Enzyme Recognition sequence
and cleavage positions

System organization

RM.BpuSI GGGAC 10/14 R��M�[GGGAC] & M1 & M2
RM.BseRI GAGGAG 10/8 R��M�[GAGGAG] & M1�M2
RM.Eco57I CTGAAG 16/14 R��M�[CTGAAG] & M
RM.BpmI CTGGAG 16/14 R��M�[CTGGAG] & M
RM.Tth111II CAARCA 11/9 1-2R��M�[CAARCA]
RM.MmeI TCCRAC 20/18 1-2R��M�[TCCRAC]
RM.NmeAIII GCCGAG 20/18 1-2R��M�[GCCGAG]
RM.AquIV GRGGAAG 20/18 1-2R��M�[GRGGAAG]
RM.BaeI 10/15 AC N4 GTAYC 12/7 2R��M+S1�S2

RM.BcgI 10/12 CGA N6 TGC 12/10 2R��M+S1�S2
RM.CspCI 10/12 CCAC N5 TTG 12/10 2R��M+[CCAC]�[CAA]
RM.BsaXI 9/12 AC N5 CTCC 10/7 2R��M+S1�S2
RM.NgoAVIII 10/12 TCA N5 GTC 13/11 2R��M+[TCA]�[GAC]
RM.HaeIV 7/13 GAY N5 RTC 14/9 2R��M�[GAY]
RM.AloI 7/12 GGA N6 GTTC 12/7 R��M�[GGA]�[GAAC]
RM.PpiI 8/13 GAG N5 GTTC 12/7 R��M�[GAG]�[GAAC]
RM.TstI 7/12 GGA N6 GTG 13/8 R��M�[GGA]�[CAC]

Differences occur in the number of catalytic domains/subunits (RM), the number of specificity domains/subunits
(S) and in the linkages between them. Frequently, these mirror the different forms of �-MTases listed in Table 3.
Column 1: Type IIG enzymes are �-MTases with N-terminal DNA-cleavage domains. They are differentiated from
other system components by the prefix ‘RM.’. For brevity, this prefix is often omitted. Column 2: Numerals inside
the sequences indicate the number of non-specific bases between the half-sequences. Numerals outside indicate the
positions of cleavage. GGGAC 10/14, for example, signifies that cleavage takes place to the right of the sequence
shown, 10 bases further down on that strand and 14 bases further down on the other strand. Column 3:
Organization of the system, and domain/subunit composition of the R-M enzyme. ‘�’ indicates the components
are covalently joined; ‘+’ indicates they are separate subunits. ‘&’ indicates that additional MTases (M, M1, M2)
are components of the system and provide protective modification. Stoichiometry, known or inferred, is indicated
by the numeral preceding the protein. MmeI-like enzymes are monomers but likely act as homodimers/
homotetramers; this bimodal behavior is indicated by ‘1–2’. Where known, the specificities of the TRDs are
given in square brackets and are shown in the order in which they occur within the protein. When the order is
not known, the TRDs are designated S1 and S2.
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dimerization between neighboring enzyme molecules.
Because cleavage takes place on both sides of the recog-
nition sequence, multiple molecules are involved at the
same time (228–231).

Cleavage geometry
As the RM subunits of Type IIB enzymes methylate the
half-sequence to which they are bound, it seems logical
that they would cleave on the same side, too. If so, the
RM subunit would be cleaving on the 50 side of the
methylated base, upstream of the recognition site. Type
IIG enzymes that bind continuous, rather than bipartite,
recognition sequences invariably cleave on the 30 side of
the methylated base, downstream, in the opposite direc-
tion. The RM subunit of BcgI is similar in size and pre-
dicted structure to the corresponding RM domain of
MmeI (described later in the text), suggesting that these
two enzymes cleave and methylate with similar geometries.
Nevertheless, BcgI cleaves 12/14 upstream, whereas MmeI
cleaves 21/19 downstream (Table 4). How to reconcile this
considerable catalytic discrepancy is not clear. One possi-
bility is for the BcgI subunits to cleave on the other side of
the recognition sequence, in which case they would be
cleaving 21/19 downstream, exactly like MmeI. Another
possibility is for MmeI to act as a dimer or tetramer and to
cleave 12/14 upstream, but not of the sequence to which it
is bound, but instead to a flanking, inverted sequence, that
lies side-by-side.

Single-chain Type IIG enzymes: AloI
A number of single-chain Type IIG enzymes also cleave
on both sides of bipartite recognition sequences. HaeIV,
for example, cleaves on both sides of a recognition
sequence that is symmetric, suggesting that it acts as a
homodimer—the Type IIG equivalent of MTases like
M.DrdI (Table 4) (232). In other enzymes, such as AloI
and CjeI, the two subunits of a BcgI-like ancestor are
fused into a single protein that possesses two TRDs at
the C-terminus (233–235). These enzymes are �1250 aa
in length, and both TRDs appear to be functional, as
shown by domain-swap experiments (236). Yet, how
they act is a mystery because the normal stoichiometry
of 1RM:1TRD such as occurs in BcgI and all other
Type II G enzymes, is reduced to 1RM:2TRD in CjeI
and AloI (Figure 6). This reduction deprives one of the
two TRDs of an RM domain with which to methylate or
to cleave (226).

Bimodal Type IIG enzymes: MmeI
MmeI (TCCRAC 20/18) was the first Type IIG enzyme to
be purified (237), but it was not well-characterized until
many years later (238). MmeI belongs to a large family
of closely related enzymes whose specificities have
diversified extensively (196). ‘By-eye-oinformatics’
analysis correlating TRDs with sequences recognized, in
combination with mutagenesis experiments, have led to
the identification of most of the ‘contact’ amino acids
responsible for sequence-recognition (196). Remarkably,
when these aa are judiciously changed the specificities of
the enzymes also change, predictably and robustly (196).
A model of MmeI bound to DNA has been reported

(239), and the X-ray crystal structures of MmeI bound
to DNA, and of NmeAIII without DNA, have recently
been solved [(195); Scott Callahan and Aneel Aggarwal,
personal communication]. The DNA-bound TRD of
MmeI superimposes on M.TaqI and the crystallized
Type I S subunits (95,96), enabling the identities of some
of the contact residues to be transferred. This might allow
Type I R–M enzyme specificities to be changed rationally,
base-by-base, in the same way they can now be changed in
MmeI-family enzymes (196). Eventually, it might also
allow the specificities of some of the thousands of the
putative S subunits in REBASE to be assigned by simple
inspection of their aa sequences.

MmeI-family enzymes purify as monomers, but it seems
likely that in vivo they act as homodimers in somewhat the
same way as Type III R–M enzymes are thought to do
(240,241). MmeI-enzymes protectively modify their DNA
without the need for accompanying MTases, and because
their specificities are generally asymmetric, they methylate
only one strand (238). This has led to the suggestion they
be termed ‘Type IIL’ enzymes, for Lone-strand modifica-
tion (242). It would be astonishing if the MmeI-family
enzymes did rely on modification of only one strand for
protection, however, because then they would have no
way to distinguish unmodified, infecting DNA from un-
modified, but newly replicated, host DNA. A priori, it
seems likely that they rely instead on pairs of recognition
sequences in opposite, head-to-head, orientations. One
member of such pairs will always be modified in newly
replicated DNA, whereas neither will be modified in
infecting DNA.

Type I R–M enzymes faced this same problem during
evolution and solved it by binding to two inverted half-
sequences approximately one DNA helix turn apart.
Things are somewhat different for the MmeI enzymes
because the opposing sites are not a fixed distance apart,
implying that protein–protein interaction must depend on
sliding or DNA looping (243,244). MmeI-enzymes are
predicted to have alpha-helical domains at their
C-termini (239) that could act as dimerization zippers to
interconnect adjacent enzyme molecules. Such helices
occur at the C-termini of �-MTases that act as dimers
such as M.DrdI and M.AhdI, but they do not occur at
the C-termini of �-MTases such as M.TaqI that act as
monomers and have no need for them (Figure 6). It
seems plausible, then, that MmeI-type enzymes bind to
their recognition sequences as monomers, but cleave
DNA only after assembling into homodimers, the
overall organizations of which are similar to Type I
MTases. If so, what we refer to as the ‘recognition
sequence’ of MmeI (i.e. TCCRAC) is the equivalent of a
Type I half-sequence, and its complete binding site is the
indefinite symmetric sequence: TCCRAC Ni GTYGGA
(where i can be any number of base pairs between �50
and 5000).

‘Type ISP’ enzymes
The recently christened ‘Type ISP’ enzymes combine
features of both Type I and MmeI-type enzymes. They
are long single-polypeptide chain fusions of, in order, an
N-terminal Mrr-like endonuclease domain (typically,
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PD-QXK instead of PD-EXK), a DNA-translocase
domain, a �-MTase and a C-terminal TRD (245–247)
(Figure 6). Type ISP enzymes recognize continuous, asym-
metric sequences, or perhaps more accurately ‘half-
sequences’, and they behave essentially like ‘half-Type
I R-M enzymes’ showing ATP-dependent DNA transloca-
tion and a requirement for two target sites in head-to-head
orientation for cleavage. Cleavage requires two molecules
of the enzyme, and it occurs at a random location between
the two sites (248). Translocation produces loops of DNA,
but only a single recognition site, and a single copy of the
enzyme, is needed for this to take place (249).

CONCLUSION

Type I R–M enzymes and their relatives represent a huge
group of sequence-specific DNA-binding proteins with
varied specificities, oligomeric organizations and catalytic
properties. Traditionally, they have been difficult to char-
acterize, but genome sequencing, bioinformatics and, very
recently, methylome analysis by next-generation SMRT
sequencing have thrown open a wide door for identifying
them and determining their target recognition sequences.
As more of these enzymes are analyzed, a detailed under-
standing of how they recognize DNA will emerge. This
could allow new specificities to be engineered at will,
and new biochemical functions to be delivered to DNA
sequences of choice. Type I enzymes and their relatives
offer numerous opportunities for protein design and fab-
rication. Although they have been studied for >50 years,
their potential as molecular tools and as sources of nano-
scale biochemical components is only now becoming
apparent.
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