152 research outputs found

    Destabilization of chromosome 9 in transitional cell carcinoma of the urinary bladder

    Get PDF
    The most frequent genetic alteration in transitional cell carcinoma of the urinary bladder (TCC) is loss of chromosome 9 which targets CDKN2A on 9p. The targets on 9q are not confirmed. Here, 81 advanced TCC specimens were investigated for loss of heterozygosity (LOH) and homozygous deletions (HD) on chromosome 9q using multiplex analysis of microsatellite markers. 41/81 tumours (51%) showed LOH on 9q, with LOH at all markers in 33 cases. Eight partial losses involved three regions in 9q12, 9q22.3, and 9q33– 9q34. No mutations were identified in the candidate tumour suppressor gene DBCCR1 in three tumours showing restricted LOH at 9q32-33. 22% of the specimens had HD at CDKN2A, but no HD was found on 9q. Two tumours had lost 9p only and five 9q only. 9q LOH was not related to tumour grade or stage and present or absent with equal frequency in recurrent TCC. LOH on 9q correlated with the extent of genome-wide hypomethylation (P < 0.0001) which extended into satellite sequences located in 9q12 juxtacentromeric heterochromatin. While the high frequency of chromosome 9q loss in TCC may reflect destabilization of the chromosome related to hypomethylation of repetitive DNA, the data are compatible with the existence of tumour suppressor genes on this chromosome arm. http://www.bjcancer.com © 2001 Cancer Research Campaig

    Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer

    Get PDF
    BACKGROUND: Alterations of chromosome 8 and hypomethylation of LINE-1 retrotransposons are common alterations in advanced prostate carcinoma. In a former study including many metastatic cases, they strongly correlated with each other. To elucidate a possible interaction between the two alterations, we investigated their relationship in less advanced prostate cancers. RESULTS: In 50 primary tumor tissues, no correlation was observed between chromosome 8 alterations determined by comparative genomic hybridization and LINE-1 hypomethylation measured by Southern blot hybridization. The discrepancy towards the former study, which had been dominated by advanced stage cases, suggests that both alterations converge and interact during prostate cancer progression. Therefore, interaction analysis was performed on microarray-based expression profiles of cancers harboring both alterations, only one, or none. Application of a novel bioinformatic method identified Gene Ontology (GO) groups related to innate immunity, cytoskeletal organization and cell adhesion as common targets of both alterations. Many genes targeted by their interaction were involved in type I and II interferon signaling and several were functionally related to hereditary prostate cancer genes. In addition, the interaction appeared to influence a switch in the expression pattern of EPB41L genes encoding 4.1 cytoskeleton proteins. Real-time RT-PCR revealed GADD45A, MX1, EPB41L3/DAL1, and FBLN1 as generally downregulated in prostate cancer, whereas HOXB13 and EPB41L4B were upregulated. TLR3 was downregulated in a subset of the cases and associated with recurrence. Downregulation of EPB41L3, but not of GADD45A, was associated with promoter hypermethylation, which was detected in 79% of carcinoma samples. CONCLUSION: Alterations of chromosome 8 and DNA hypomethylation in prostate cancer probably do not cause each other, but converge during progression. The present analysis implicates their interaction in innate immune response suppression and cytoskeletal changes during prostate cancer progression. The study thus highlights novel mechanisms in prostate cancer progression and identifies novel candidate genes for diagnostic and therapeutic purposes. In particular, TLR3 expression might be useful for prostate cancer prognosis and EPB41L3 hypermethylation for its detection

    Taskforce report on the diagnosis and clinical management of COVID-19 associated pulmonary aspergillosis

    Get PDF
    Purpose: Invasive pulmonary aspergillosis (IPA) is increasingly reported in patients with severe coronavirus disease 2019 (COVID-19) admitted to the intensive care unit (ICU). Diagnosis and management of COVID-19 associated pulmonary aspergillosis (CAPA) are challenging and our aim was to develop practical guidance. Methods: A group of 28 international experts reviewed current insights in the epidemiology, diagnosis and management of CAPA and developed recommendations using GRADE methodology. Results: The prevalence of CAPA varied between 0 and 33%, which may be partly due to variable case definitions, but likely represents true variation. Bronchoscopy and bronchoalveolar lavage (BAL) remain the cornerstone of CAPA diagnosis, allowing for diagnosis of invasive Aspergillus tracheobronchitis and collection of the best validated specimen for Aspergillus diagnostics. Most patients diagnosed with CAPA lack traditional host factors, but pre-existing structural lung disease and immunomodulating therapy may predispose to CAPA risk. Computed tomography seems to be of limited value to rule CAPA in or out, and serum biomarkers are negative in 85% of patients. As the mortality of CAPA is around 50%, antifungal therapy is recommended for BAL positive patients, but the decision to treat depends on the patients’ clinical condition and the institutional incidence of CAPA. We recommend against routinely stopping concomitant corticosteroid or IL-6 blocking therapy in CAPA patients. Conclusion: CAPA is a complex disease involving a continuum of respiratory colonization, tissue invasion and angioinvasive disease. Knowledge gaps including true epidemiology, optimal diagnostic work-up, management strategies and role of host-directed therapy require further study

    IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis

    Get PDF
    Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurrs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF

    Contribution of CgPDR1-Regulated Genes in Enhanced Virulence of Azole-Resistant Candida glabrata

    Get PDF
    In Candida glabrata, the transcription factor CgPdr1 is involved in resistance to azole antifungals via upregulation of ATP binding cassette (ABC)-transporter genes including at least CgCDR1, CgCDR2 and CgSNQ2. A high diversity of GOF (gain-of-function) mutations in CgPDR1 exists for the upregulation of ABC-transporters. These mutations enhance C. glabrata virulence in animal models, thus indicating that CgPDR1 might regulate the expression of yet unidentified virulence factors. We hypothesized that CgPdr1-dependent virulence factor(s) should be commonly regulated by all GOF mutations in CgPDR1. As deduced from transcript profiling with microarrays, a high number of genes (up to 385) were differentially regulated by a selected number (7) of GOF mutations expressed in the same genetic background. Surprisingly, the transcriptional profiles resulting from expression of GOF mutations showed minimal overlap in co-regulated genes. Only two genes, CgCDR1 and PUP1 (for PDR1 upregulated and encoding a mitochondrial protein), were commonly upregulated by all tested GOFs. While both genes mediated azole resistance, although to different extents, their deletions in an azole-resistant isolate led to a reduction of virulence and decreased tissue burden as compared to clinical parents. As expected from their role in C. glabrata virulence, the two genes were expressed as well in vitro and in vivo. The individual overexpression of these two genes in a CgPDR1-independent manner could partially restore phenotypes obtained in clinical isolates. These data therefore demonstrate that at least these two CgPDR1-dependent and -upregulated genes contribute to the enhanced virulence of C. glabrata that acquired azole resistance

    Different molecular mechanisms causing 9p21 deletions in acute lymphoblastic leukemia of childhood

    Get PDF
    Deletion of chromosome 9p21 is a crucial event for the development of several cancers including acute lymphoblastic leukemia (ALL). Double strand breaks (DSBs) triggering 9p21 deletions in ALL have been reported to occur at a few defined sites by illegitimate action of the V(D)J recombination activating protein complex. We have cloned 23 breakpoint junctions for a total of 46 breakpoints in 17 childhood ALL (9 B- and 8 T-lineages) showing different size deletions at one or both homologous chromosomes 9 to investigate which particular sequences make the region susceptible to interstitial deletion. We found that half of 9p21 deletion breakpoints were mediated by ectopic V(D)J recombination mechanisms whereas the remaining half were associated to repeated sequences, including some with potential for non-B DNA structure formation. Other mechanisms, such as microhomology-mediated repair, that are common in other cancers, play only a very minor role in ALL. Nucleotide insertions at breakpoint junctions and microinversions flanking the breakpoints have been detected at 20/23 and 2/23 breakpoint junctions, respectively, both in the presence of recombination signal sequence (RSS)-like sequences and of other unspecific sequences. The majority of breakpoints were unique except for two cases, both T-ALL, showing identical deletions. Four of the 46 breakpoints coincide with those reported in other cases, thus confirming the presence of recurrent deletion hotspots. Among the six cases with heterozygous 9p deletions, we found that the remaining CDKN2A and CDKN2B alleles were hypermethylated at CpG islands

    Attributable mortality of candidemia – Results from the ECMM Candida III multinational European Observational Cohort Study

    Get PDF
    \ua9 2024 The Author(s)Introduction: Despite antifungal advancements, candidaemia still has a high mortality rate of up to 40%. The ECMM Candida III study in Europe investigated the changing epidemiology and outcomes of candidaemia for better understanding and management of these infections. Methods: In this observational cohort study, participating hospitals enrolled the first ten consecutive adults with blood culture-proven candidemia. Collected data included patient demographics, risk factors, hospital stay duration (follow-up of 90 days), diagnostic procedures, causative Candida spp., management details, and outcome. Controls were included in a 1:1 fashion from the same hospitals. The matching process ensured similarity in age (10-year range), primary underlying disease, hospitalization in intensive care versus non-ICU ward, and major surgery within 2 weeks before candidemia between cases and controls. Overall and attributable mortality were described, and a survival probability for cases and controls was performed. Results: One hundred seventy-one pairs consisting of patients with candidemia and matched controls from 28 institutions were included. In those with candidemia, overall mortality was 40.4%. Attributable mortality was 18.1% overall but differed between causative Candida species (7.7% for Candida albicans, 23.7% for Candida glabrata/Nakaseomyces glabratus, 7.7% for Candida parapsilosis and 63.6% for Candida tropicalis). Regarding risk factors, the presence of a central venous catheter, total parenteral nutrition and acute or chronic renal disease were significantly more common in cases versus controls. Duration of hospitalization, and especially that of ICU stay, was significantly longer in candidemia cases (20 (IQR 10–33) vs 15 days (IQR 7–28); p = 0.004). Conclusions: Although overall and attributable mortality in this subgroup analysis of matched case/control pairs remains high, the attributable mortality appears to have decreased in comparison to historical cohorts. This decrease may be driven by improved prognosis of Candida albicans and Candida parapsilosis candidemia; whereas candidemia due to other Candida spp. exhibits a much higher attributable mortality
    corecore