80 research outputs found

    Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development

    Get PDF
    The mechanisms controlling mammalian organ size have long been a source of fascination for biologists. These controls are needed to both ensure the integrity of the body plan and to restrict inappropriate proliferation that could lead to cancer. Regulation of liver size is of particular interest inasmuch as this organ maintains the capacity for regeneration throughout life, and is able to regain precisely its original mass after partial surgical resection. Recent studies using genetically engineered mouse strains have shed new light on this problem; the Hippo signalling pathway, first elucidated as a regulator of organ size in Drosophila, has been identified as dominant determinant of liver growth. Defects in this pathway in mouse liver lead to sustained liver overgrowth and the eventual development of both major types of liver cancer, hepatocellular carcinoma and cholangiocarcinoma. In this review, we discuss the role of Hippo signalling in liver biology and the contribution of this pathway to liver cancer in humans

    The Cilium: Cellular Antenna and Central Processing Unit

    Get PDF
    Cilia mediate an astonishing diversity of processes. Recent advances provide unexpected insights into the regulatory mechanisms of cilium formation, and reveal diverse regulatory inputs that are related to the cell cycle, cytoskeleton, proteostasis, and cilia-mediated signaling itself. Ciliogenesis and cilia maintenance are regulated by reciprocal antagonistic or synergistic influences, often acting in parallel to each other. By receiving parallel inputs, cilia appear to integrate multiple signals into specific outputs and may have functions similar to logic gates of digital systems. Some combinations of input signals appear to impose higher hierarchical control related to the cell cycle. An integrated view of these regulatory inputs will be necessary to understand ciliogenesis and its wider relevance to human biology

    Reaching for the stars : Iranian nurses\u27 perceptions of career success

    No full text
    Aim: The aim was to explore nurses\u27 perceptions of career success.Introduction: Career success is a concept which leads to improving professional behaviours. Research that focused on conceptualizing career success found it to be a complex, value-driven construct likely to be perceived differently across work and cultural contexts. It is not yet clear what constitutes career success, and how it is perceived by nurses in Iran. More comprehensive exploration of this concept in nursing is needed, so research and policymaking can advance in informed, data-driven manner.Method: This is a qualitative descriptive study. The setting was teaching hospitals of Iran. Twenty-seven nurses participated in face-to-face interviews, and six field notes were collected. Data were analysed using conventional content analysis.Findings: Analyses identified five themes of career success: providing high-quality care, being exemplary employee, embarking on career growth, having positive personal attributes and being internally satisfied.Conclusion: Findings confirmed that career success in Iranian nurses was a multidimensional concept that represented five internally and externally driven dimensions set within its cultural and religious context. Policymakers and clinical educators can now plan interventions aimed at fostering career success in nursing staff.Implications: Future nurses could use these finding to reflect on their developed attributes throughout their studies and clinical placements and adjust their career preparation and learning to bridge any identified gaps. Organizational values and intervention for nursing staff could also be redesigned to align with the aspects of career success

    Quantifying the Kinase Activities of MST1/2

    No full text
    The functions of the kinases MST1 and MST2 rely heavily on their ability to phosphorylate and become phosphorylated themselves. Hence, it is important to precisely measure the kinase activities of both isoforms in a reproducible manner. Here, we describe in detail the protocol for an in-gel kinase assay for the quantification of the kinase activity of MST1/2, which involves immunoprecipitation of MST1/2 and the incorporation of radiolabeled phosphate from [γ-32P]-ATP into a substrate immobilized in a polyacrylamide gel. We also include a protocol for indirect measurement of MST1/2 activation status using immunoblotting.Science Foundation Irelan

    The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of naïve T cells

    No full text
    The Mst1 and Mst2 protein kinases are the mammalian homologs of hippo, a major inhibitor of cell proliferation in Drosophila. Mst1 is most abundant in lymphoid tissues. Mice lacking Mst1 exhibit markedly reduced levels of the Mst1 regulatory protein Nore1B/RAPL in lymphoid cells, whereas Mst2 abundance is unaltered. Mst1-null mice exhibit normal T cell development but low numbers of mature naïve T cells with relatively normal numbers of effector/memory T cells. In vitro, the Mst1-deficient naïve T cells exhibit markedly greater proliferation in response to stimulation of the T cell receptor whereas the proliferative responses of the Mst1-null effector/memory T cell cohort is similar to wild type. Thus, elimination of Mst1 removes a barrier to the activation and proliferative response of naïve T cells. The levels of Mst1 and Nore1B/RAPL in wild-type effector/memory T cells are approximately 10% those seen in wild-type naïve T cells, which may contribute to the enhanced proliferative responses of the former. Freshly isolated Mst1-null T cells exhibit high rates of ongoing apoptosis, a likely basis for their low numbers in vivo; they also exhibit defective clustering of LFA-1, as previously observed for Nore1B/RAPL-deficient T cells. Among known Mst1 substrates, only the phosphorylation of the cell cycle inhibitory proteins MOBKL1A/B is lost entirely in TCR-stimulated, Mst1-deficient T cells. Mst1/2-catalyzed MOBKL1A/B phosphorylation slows proliferation and is therefore a likely contributor to the anti-proliferative action of Mst1 in naïve T cells. The Nore1B/RAPL-Mst1 complex is a negative regulator of naïve T cell proliferation
    corecore