157 research outputs found

    The rate of environmental change as an important driver across scales in ecology

    Get PDF
    Global change has been predominantly studied from the prism of ‘how much' rather than ‘how fast' change occurs. Associated to this, there has been a focus on environmental drivers crossing a critical value and causing so-called regime shifts. This presupposes that the rate at which environmental conditions change is slow enough to allow the ecological entity to remain close to a stable attractor (e.g. an equilibrium). However, environmental change is occurring at unprecedented rates. Equivalently to the classical regime shifts, theory shows that a critical threshold in rates of change can exist, which can cause rate-induced tipping (R-tipping). However, the potential implications of R-tipping in ecology remain understudied. We aim to facilitate the application of R-tipping theory in ecology with the objective of identifying which properties (e.g. level of organisation) increase susceptibility to rates of change. First, we clarify the fundamental difference between tipping caused by the magnitude as opposed to the rate of change crossing a threshold. Then we present examples of R-tipping from the ecological literature and seek the ecological properties related to higher sensitivity to rates of change. Specifically, we consider the role of the level of ecological organisation, spatial processes, eco-evolutionary dynamics and pair–wise interactions in mediating or buffering rate-induced transitions. Finally, we discuss how targeted experiments can investigate the mechanisms associated to increasing rates of change. Ultimately, we seek to highlight the need to better understand how rates of environmental change may induce ecological responses and to facilitate the systematic study of rates of environmental change in the context of current global change

    Carcass persistence and detectability : reducing the uncertainty surrounding wildlife-vehicle collision surveys

    Get PDF
    Carcass persistence time and detectability are two main sources of uncertainty on roadkill surveys. In this study, we evaluate the influence of these uncertainties on roadkill surveys and estimates. To estimate carcass persistence time, three observers (including the driver) surveyed 114km by car on a monthly basis for two years, searching for wildlife-vehicle collisions (WVC). Each survey consisted of five consecutive days. To estimate carcass detectability, we randomly selected stretches of 500m to be also surveyed on foot by two other observers (total 292 walked stretches, 146 km walked). We expected that body size of the carcass, road type, presence of scavengers and weather conditions to be the main drivers influencing the carcass persistence times, but their relative importance was unknown. We also expected detectability to be highly dependent on body size. Overall, we recorded low median persistence times (one day) and low detectability (<10%) for all vertebrates. The results indicate that body size and landscape cover (as a surrogate of scavengers' presence) are the major drivers of carcass persistence. Detectability was lower for animals with body mass less than 100g when compared to carcass with higher body mass. We estimated that our recorded mortality rates underestimated actual values of mortality by 2±10 fold. Although persistence times were similar to previous studies, the detectability rates here described are very different from previous studies. The results suggest that detectability is the main source of bias across WVC studies. Therefore, more than persistence times, studies should carefully account for differing detectability when comparing WVC studies

    Rac1 Regulates the NLRP3 Inflammasome Which Mediates IL-1beta Production in Chlamydophila pneumoniae Infected Human Mononuclear Cells

    Get PDF
    Chlamydophila pneumoniae causes acute respiratory tract infections and has been associated with development of asthma and atherosclerosis. The production of IL-1β, a key mediator of acute and chronic inflammation, is regulated on a transcriptional level and additionally on a posttranslational level by inflammasomes. In the present study we show that C. pneumoniae-infected human mononuclear cells produce IL-1β protein depending on an inflammasome consisting of NLRP3, the adapter protein ASC and caspase-1. We further found that the small GTPase Rac1 is activated in C. pneumoniae-infected cells. Importantly, studies with specific inhibitors as well as siRNA show that Rac1 regulates inflammasome activation in C. pneumoniae-infected cells. In conclusion, C. pneumoniae infection of mononuclear cells stimulates IL-1β production dependent on a NLRP3 inflammasome-mediated processing of proIL-1β which is controlled by Rac1

    A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases

    Get PDF
    The NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is a component of the inflammatory process, and its aberrant activation is pathogenic in inherited disorders such as cryopyrin-associated periodic syndrome (CAPS) and complex diseases such as multiple sclerosis, type 2 diabetes, Alzheimer's disease and atherosclerosis. We describe the development of MCC950, a potent, selective, small-molecule inhibitor of NLRP3. MCC950 blocked canonical and noncanonical NLRP3 activation at nanomolar concentrations. MCC950 specifically inhibited activation of NLRP3 but not the AIM2, NLRC4 or NLRP1 inflammasomes. MCC950 reduced interleukin-1 beta (IL-1 beta) production in vivo and attenuated the severity of experimental autoimmune encephalomyelitis (EAE), a disease model of multiple sclerosis. Furthermore, MCC950 treatment rescued neonatal lethality in a mouse model of CAPS and was active in ex vivo samples from individuals with Muckle-Wells syndrome. MCC950 is thus a potential therapeutic for NLRP3-associated syndromes, including autoinflammatory and autoimmune diseases, and a tool for further study of the NLRP3 inflammasome in human health and disease

    The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    No full text
    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence

    The Staphylococcus aureus superantigen SElX is a bifunctional toxin that inhibits neutrophil function:SElX Inhibits Neutrophil Function

    Get PDF
    Bacterial superantigens (SAgs) cause Vβ-dependent T-cell proliferation leading to immune dysregulation associated with the pathogenesis of life-threatening infections such as toxic shock syndrome, and necrotizing pneumonia. Previously, we demonstrated that staphylococcal enterotoxin-like toxin X (SElX) from Staphylococcus aureus is a classical superantigen that exhibits T-cell activation in a Vβ-specific manner, and contributes to the pathogenesis of necrotizing pneumonia. Here, we discovered that SElX can also bind to neutrophils from human and other mammalian species and disrupt IgG-mediated phagocytosis. Site-directed mutagenesis of the conserved sialic acid-binding motif of SElX abolished neutrophil binding and phagocytic killing, and revealed multiple glycosylated neutrophil receptors for SElX binding. Furthermore, the neutrophil binding-deficient mutant of SElX retained its capacity for T-cell activation demonstrating that SElX exhibits mechanistically independent activities on distinct cell populations associated with acquired and innate immunity, respectively. Finally, we demonstrated that the neutrophil-binding activity rather than superantigenicity is responsible for the SElX-dependent virulence observed in a necrotizing pneumonia rabbit model of infection. Taken together, we report the first example of a SAg, that can manipulate both the innate and adaptive arms of the human immune system during S. aureus pathogenesis

    Lipid and Non-lipid Factors Affecting Macrophage Dysfunction and Inflammation in Atherosclerosis

    Get PDF
    Atherosclerosis is a chronic inflammatory disease and a leading cause of human mortality. The lesional microenvironment contains a complex accumulation of variably oxidized lipids and cytokines. Infiltrating monocytes become polarized in response to these stimuli, resulting in a broad spectrum of macrophage phenotypes. The extent of lipid loading in macrophages influences their phenotype and consequently their inflammatory status. In response to excess atherogenic ligands, many normal cell processes become aberrant following a loss of homeostasis. This can have a direct impact upon the inflammatory response, and conversely inflammation can lead to cell dysfunction. Clear evidence for this exists in the lysosomes, endoplasmic reticulum and mitochondria of atherosclerotic macrophages, the principal lesional cell type. Furthermore, several intrinsic cell processes become dysregulated under lipidotic conditions. Therapeutic strategies aimed at restoring cell function under disease conditions are an ongoing coveted aim. Macrophages play a central role in promoting lesional inflammation, with plaque progression and stability being directly proportional to macrophage abundance. Understanding how mixtures or individual lipid species regulate macrophage biology is therefore a major area of atherosclerosis research. In this review, we will discuss how the myriad of lipid and lipoprotein classes and products used to model atherogenic, proinflammatory immune responses has facilitated a greater understanding of some of the intricacies of chronic inflammation and cell function. Despite this, lipid oxidation produces a complex mixture of products and with no single or standard method of derivatization, there exists some variation in the reported effects of certain oxidized lipids. Likewise, differences in the methods used to generate macrophages in vitro may also lead to variable responses when apparently identical lipid ligands are used. Consequently, the complexity of reported macrophage phenotypes has implications for our understanding of the metabolic pathways, processes and shifts underpinning their activation and inflammatory status. Using oxidized low density lipoproteins and its oxidized cholesteryl esters and phospholipid constituents to stimulate macrophage has been hugely valuable, however there is now an argument that only working with low complexity lipid species can deliver the most useful information to guide therapies aimed at controlling atherosclerosis and cardiovascular complications

    Bacterial RNA Mediates Activation of Caspase-1 and IL-1β Release Independently of TLRs 3, 7, 9 and TRIF but Is Dependent on UNC93B

    No full text
    Recognition of foreign nucleic acids is important for the induction of an innate immune response against invading pathogens. Although the pathways involved in sensing bacterial DNA and viral RNA are now well established, only limited knowledge is available on mechanisms underlying recognition of bacterial RNA. It has been reported that intracellular delivery of Escherichia coli RNA activates the Nlrp3 inflammasome, but whether this is a general property of bacterial RNA remains unclear as are the pathways involved in pro-IL-1β induction and caspase-1 activation by bacterial RNA. In this study, we report that bacterial RNA from both Gram-positive and Gram-negative bacteria induces activation of caspase-1 and secretion of IL-1β by murine dendritic cells and bone-marrow derived macrophages. Stimulation was independent of the presence of 5'-triphosphate termini and occurred with whole RNA preparations from bacteria but not from eukaryotes. Induction of pro-IL-1β as well as the priming for caspase-1 activation by bacterial RNA was dependent on UNC93B, an endoplasmic reticulum protein essential for delivery of TLRs to the endosome, whereas the established nucleic acid sensing endosomal TLRs 3, 7, and 9 were dispensable. Additionally, caspase-1 activation and IL-1β production by transfected bacterial RNA were absent in MyD88-deficient cells but independent of TRIF. Thus, our data indicate the presence of a yet unidentified intracellular nucleic acid receptor involved in bacterial RNA-induced inflammasome activation and release of IL-1β
    • …
    corecore