163 research outputs found

    The relationship between fibrogenic TGFβ1 signaling in the joint and cartilage degradation in post-injury osteoarthritis

    Get PDF
    SummaryObjectiveTo review the literature on modulation of chondrocyte activities in the osteoarthritic joint, and to discuss these changes in relation to established hard and soft tissue repair paradigms, with an emphasis on transforming growth factor beta (TGFβ1)-mediated signaling which can promote either a chondrogenic or fibrogenic phenotype.MethodsPapers addressing the close relationship between repair in general, and the specific post-injury response of joint tissues are summarized. Different interpretations of the role of TGFβ1 in the emergence of an “osteoarthritic” chondrocyte are compared and the phenotypic plasticity of “reparative” progenitor cells is examined. Lastly, emerging data on a central role for A-Disintegrin-And-Metalloproteinase-with-Thrombospondin-like-Sequences-5 (ADAMTS5) activity in modulating TGFβ1 signaling through activin receptor-like kinase 1 (ALK1) and activin receptor-like kinase 5 (ALK5) pathways is discussed.ResultsThe review illustrates how a transition from ALK5-mediated fibrogenic signaling to ALK1-mediated chondrogenic signaling in joint cells represents the critical transition from a non-reparative to a reparative cell phenotype. Data from cell and in vivo studies illustrates the mechanism by which ablation of ADAMTS5 activity allows the transition to reparative chondrogenesis. Multiple large gene expression studies of normal and osteoarthritis (OA) human cartilages (CAs) also support an important role for TGFβ1-mediated pro-fibrogenic activities during disease progression.ConclusionsWe conclude that progressive articular CA damage in post-injury OA results primarily from biomechanical, cell biologic and mediator changes that promote a fibroblastic phenotype in joint cells. Since ADAMTS5 and TGFβ1 appear to control this process, agents which interfere with their activities may not only enhance endogenous CA repair in vivo, but also improve the properties of tissue-engineered CA for implantation

    Aggrecanolysis in human osteoarthritis: confocal localization and biochemical characterization of ADAMTS5–hyaluronan complexes in articular cartilages

    Get PDF
    SummaryObjectiveHuman osteoarthritis (OA) is characterized by aggrecanase-mediated depletion of cartilage aggrecan. We have examined the abundance, location and some biochemical properties of the six known aggrecanases (A disintegrin and metalloproteinase with thrombospondin-like motifs 1 (ADAMTS1) 4, 5, 8, 9 and 15) in normal and OA human cartilages.MethodsFormalin-fixed, ethylenediamine tetraacetic acid (EDTA)-decalcified sections of full-depth cartilage from human OA tibial plateaus and normal control samples were studied by confocal imaging. Probes included specific antibodies to aggrecanases and two aggrecan epitopes, as well as biotinylated hyaluronan binding protein (HABP) for hyaluronan (HA) visualization. Cartilage extracts were analyzed by Western blot for the individual proteinases and aggrecan fragments.ResultsADAMTS5 was present in association with cells throughout normal cartilage and was markedly increased in OA, particularly in clonal groups in the superficial and transitional zones, where it was predominantly co-localized with HA. Consistent with the confocal analysis, a high molecular weight complex of ADAMTS5 and HA was isolated from human OA cartilage by isotonic salt extraction and chromatography on Superose 6. The complex eluted with an apparent molecular size of about 2×106 and contained major ADAMTS5 forms of 150, 60, 40 and 30kDa. The yield of most forms on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was markedly enhanced by prior digestion of the complex with either Streptomyces hyaluronidase or chondroitinase ABC.ConclusionADAMTS5 abundance and distribution in human OA cartilages is consistent with a central role for this enzyme in destructive aggrecanolysis. HA-dependent sequestration of ADAMTS5 in the pericellular matrix may be a mechanism for regulating the activity of this proteinase in human OA cartilage

    Intra-articular Injection of HB-IGF-1 Sustains Delivery of IGF-1 to Cartilage through Binding to Chondroitin Sulfate

    Get PDF
    Objective: Insulin-like growth factor 1 (IGF-1) stimulates cartilage repair but is not a practical therapy due to its short half-life. We have previously modified IGF-1 by adding a heparin-binding domain and have shown that this fusion protein (HB-IGF-1) stimulates sustained proteoglycan synthesis in cartilage. This study was undertaken to examine the mechanism by which HB-IGF-1 is retained in cartilage and to test whether HB-IGF-1 provides sustained growth factor delivery to cartilage in vivo and to human cartilage explants. Methods: Retention of HB-IGF-1 and IGF-1 was analyzed by Western blotting. The necessity of heparan sulfate (HS) or chondroitin sulfate (CS) glycosaminoglycans (GAGs) for binding was tested using enzymatic removal and cells with genetic deficiency of HS. Binding affinities of HB-IGF-1 and IGF-1 proteins for isolated GAGs were examined by surface plasmon resonance and enzyme-linked immunosorbent assay. Results: In cartilage explants, chondroitinase treatment decreased binding of HB-IGF-1, whereas heparitinase had no effect. Furthermore, HS was not necessary for HB-IGF-1 retention on cell monolayers. Binding assays showed that HB-IGF-1 bound both CS and HS, whereas IGF-1 did not bind either. After intraarticular injection in rat knees, HB-IGF-1 was retained in articular and meniscal cartilage, but not in tendon, consistent with enhanced delivery to CS-rich cartilage. Finally, HB-IGF-1 was retained in human cartilage explants but IGF-1 was not. Conclusion: Our findings indicate that after intraarticular injection in rats, HB-IGF-1 is specifically retained in cartilage through its high abundance of CS. Modification of growth factors with heparin-binding domains may be a new strategy for sustained and specific local delivery to cartilage.National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant EB-003805)National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (Grant AR-045779

    Wfs1-deficient mice display altered function of serotonergic system and increased behavioral response to antidepressants

    Get PDF
    It has been shown that mutations in the WFS1 gene make humans more susceptible to mood disorders. Besides that, mood disorders are associated with alterations in the activity of serotonergic and noradrenergic systems. Therefore, in this study, the effects of imipramine, an inhibitor of serotonin (5-HT) and noradrenaline (NA) reuptake, and paroxetine, a selective inhibitor of 5-HT reuptake, were studied in tests of behavioral despair. The tail suspension test (TST) and forced swimming test (FST) were performed in Wfs1-deficient mice. Simultaneously, gene expression and monoamine metabolism studies were conducted to evaluate changes in 5-HT- and NA-ergic systems of Wfs1-deficient mice. The basal immobility time of Wfs1-deficient mice in TST and FST did not differ from that of their wild-type littermates. However, a significant reduction of immobility time in response to lower doses of imipramine and paroxetine was observed in homozygous Wfs1-deficient mice, but not in their wild-type littermates. In gene expression studies, the levels of 5-HT transporter (SERT) were significantly reduced in the pons of homozygous animals. Monoamine metabolism was assayed separately in the dorsal and ventral striatum of naive mice and mice exposed for 30 min to brightly lit motility boxes. We found that this aversive challenge caused a significant increase in the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of 5-HT, in the ventral and dorsal striatum of wild-type mice, but not in their homozygous littermates. Taken together, the blunted 5-HT metabolism and reduced levels of SERT are a likely reason for the elevated sensitivity of these mice to the action of imipramine and paroxetine. These changes in the pharmacological and neurochemical phenotype of Wfs1-deficient mice may help to explain the increased susceptibility of Wolfram syndrome patients to depressive states

    Intermittent applied mechanical loading induces subchondral bone thickening that may be intensified locally by contiguous articular cartilage lesions

    Get PDF
    Objectives: Changes in subchondral bone (SCB) and cross-talk with articular cartilage (AC) have been linked to osteoarthritis (OA). Using micro-computed tomography (micro-CT) this study: (1) examines changes in SCB architecture in a non-invasive loading mouse model in which focal AC lesions are induced selectively in the lateral femur, and (2) determines any modifications in the contralateral knee, linked to changes in gait, which might complicate use of this limb as an internal control. Methods: Right knee joints of CBA mice were loaded: once with 2weeks of habitual use (n=7), for 2weeks (n=8) or for 5weeks (n=5). Both left (contralateral) and right (loaded) knees were micro-CT scanned and the SCB and trabecular bone analysed. Gait analysis was also performed. Results: These analyses showed a significant increase in SCB thickness in the lateral compartments in joints loaded for 5weeks, which was most marked in the lateral femur; the contralateral non-loaded knee also showed transient SCB thickening (loaded once and repetitively). Epiphyseal trabecular bone BV/TV and trabecular thickness were also increased in the lateral compartments after 5 weeks of loading, and in all joint compartments in the contralateral knee. Gait analysis showed that applied loading only affected gait in the contralateral himd-limb in all groups of mice from the second week after the first loading episode. Conclusions: These data indicate a spatial link between SCB thickening and AC lesions following mechanical trauma, and the clear limitations associated with the use of contralateral joints as controls in such OA models, and perhaps in OA diagnosis

    Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage

    Get PDF
    Objective: To quantify the structural characteristics and nanomechanical properties of aggrecan produced by adult bone marrow stromal cells (BMSCs) in peptide hydrogel scaffolds and compare to aggrecan from adult articular cartilage. Design: Adult equine BMSCs were encapsulated in 3D-peptide hydrogels and cultured for 21 days with TGF-β1 to induce chondrogenic differentiation. BMSC-aggrecan was extracted and compared with aggrecan from age-matched adult equine articular cartilage. Single molecules of aggrecan were visualized by atomic force microcopy-based imaging and aggrecan nanomechanical stiffness was quantified by high resolution force microscopy. Population-averaged measures of aggrecan hydrodynamic size, core protein structures and CS sulfation compositions were determined by size-exclusion chromatography, Western analysis, and fluorescence-assisted carbohydrate electrophoresis (FACE). Results: BMSC-aggrecan was primarily full-length while cartilage-aggrecan had many fragments. Single molecule measurements showed that core protein and GAG chains of BMSC-aggrecan were markedly longer than those of cartilage-aggrecan. Comparing full-length aggrecan of both species, BMSC-aggrecan had longer GAG chains, while the core protein trace lengths were similar. FACE analysis detected a ∼1:1 ratio of chondroitin-4-sulfate to chondroitin-6-sulfate in BMSC-GAG, a phenotype consistent with aggrecan from skeletally-immature cartilage. The nanomechanical stiffness of BMSC-aggrecan was demonstrably greater than that of cartilage-aggrecan at the same total sGAG (fixed charge) density. Conclusions: The higher proportion of full-length monomers, longer GAG chains and greater stiffness of the BMSC-aggrecan makes it biomechanically superior to adult cartilage-aggrecan. Aggrecan stiffness was not solely dependent on fixed charge density, but also on GAG molecular ultrastructure. These results support the use of adult BMSCs for cell-based cartilage repair.National Institutes of Health (U.S.) (NIH grant EB003805)National Institutes of Health (U.S.) (Grant AR33236)National Science Foundation (U.S.) (NSF grant NIRT-0403903)National Science Foundation (U.S.) (CMMI-0758651)National Institutes of Health (U.S.) (NIH Molecular, Cell, and Tissue Biomechanics Training Grant)Massachusetts Institute of Technology (Whitaker Health Science Fund Fellowship

    Winegrowers’ decision-making: A pan-European perspective on pesticide use and inter-row management

    Get PDF
    European viticultural landscapes not only support a significant share of rural livelihoods and cultural traditions, but also conserve biodiversity and sustain various ecosystem services. Winegrowers' practices of inter-row management (including whether to have vegetation in the inter-rows, type of vegetation, duration of vegetation cover, and soil tillage) and pesticide use (including herbicides in the inter-rows, fungicides, insecticides, and pheromone dispensers as an alternative) can affect these services. This study aims to understand winegrowers' decision-making driven by their personal characteristics, attitudes and beliefs towards viticultural practices, physical properties of vineyards, and farm management characteristics in five European winegrowing regions. These include Palatinate in Germany, Leithaberg in Austria, Tarnave in Romania, Bordeaux in France, and Montilla-Moriles in Spain. Based on a questionnaire survey, we constructed decision trees for each behaviour per case study as well as in a generic European model. We found factors that best explain how winegrowers manage their inter-rows and use pesticides. Results showed that not only do behaviours of winegrowers vary drastically across the case studies, but also the factors that explain most behaviours: farmers' attitudes and beliefs and farm management characteristics. This implies the importance of attitudes and beliefs – which are under-researched as compared to other factors – in understanding farmers’ behaviour. With the driving factors found to vary per case study, our results also imply the need for locally-adapted policies. Furthermore, our results suggest that the effects of climate change on European viticultural landscapes concern not only shifting production regions and changes in yields, but also changing pressure of pests and diseases. Any long-term behavioural change requires efforts from many stakeholders.This research was funded by the research project SECBIVIT which was funded through the 2017–2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme, with the funding organisations: Agencia Estatal de Investigación (Ministerio de ciencia e innovación/Spain), Austrian Science Fund (FWF) (grant number I 4025-B32), Federal Ministry of Education and Research (BMBF/Germany) through VDI/VDE Innovation + Technik GmbH, DLR Projektträger, French National Research Agency (ANR), Netherlands Organisation for Scientific Research (NWO), National Science Foundation (Grant #1850943) and Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI). We would like to thank all winegrowers who participated in the focus groups, online questionnaires and personal interviews and the extension services who distributed our online questionnaire through their e-mail distribution list (DLR-Rheinpfalz)

    Granulocyte-Colony Stimulating Factor (G-CSF) Improves Motor Recovery in the Rat Impactor Model for Spinal Cord Injury

    Get PDF
    Granulocyte-colony stimulating factor (G-CSF) improves outcome after experimental SCI by counteracting apoptosis, and enhancing connectivity in the injured spinal cord. Previously we have employed the mouse hemisection SCI model and studied motor function after subcutaneous or transgenic delivery of the protein. To further broaden confidence in animal efficacy data we sought to determine efficacy in a different model and a different species. Here we investigated the effects of G-CSF in Wistar rats using the New York University Impactor. In this model, corroborating our previous data, rats treated subcutaneously with G-CSF over 2 weeks show significant improvement of motor function
    corecore