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Objective: To review the literature on modulation of chondrocyte activities in the osteoarthritic joint, and
to discuss these changes in relation to established hard and soft tissue repair paradigms, with an
emphasis on transforming growth factor beta (TGFb1)-mediated signaling which can promote either
a chondrogenic or fibrogenic phenotype.
Methods: Papers addressing the close relationship between repair in general, and the specific post-injury
response of joint tissues are summarized. Different interpretations of the role of TGFb1 in the emergence
of an “osteoarthritic” chondrocyte are compared and the phenotypic plasticity of “reparative” progenitor
cells is examined. Lastly, emerging data on a central role for A-Disintegrin-And-Metalloproteinase-with-
Thrombospondin-like-Sequences-5 (ADAMTS5) activity in modulating TGFb1 signaling through activin
receptor-like kinase 1 (ALK1) and activin receptor-like kinase 5 (ALK5) pathways is discussed.
Results: The review illustrates how a transition from ALK5-mediated fibrogenic signaling to
ALK1-mediated chondrogenic signaling in joint cells represents the critical transition from a non-
reparative to a reparative cell phenotype. Data from cell and in vivo studies illustrates the mechanism
by which ablation of ADAMTS5 activity allows the transition to reparative chondrogenesis. Multiple large
gene expression studies of normal and osteoarthritis (OA) human cartilages (CAs) also support an
important role for TGFb1-mediated pro-fibrogenic activities during disease progression.
Conclusions: We conclude that progressive articular CA damage in post-injury OA results primarily from
biomechanical, cell biologic and mediator changes that promote a fibroblastic phenotype in joint cells.
Since ADAMTS5 and TGFb1 appear to control this process, agents which interfere with their activities
may not only enhance endogenous CA repair in vivo, but also improve the properties of tissue-engineered
CA for implantation.

� 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

The primary goal of osteoarthritis (OA) therapy continues to be
the protection of the articular cartilage (CA), since its progressive
degradation commonly leads to partial or total loss of joint func-
tion. On the other hand, it is now well established that traumatic
injury to the knee joint, frequently involves the ligaments, menisci,
articular CA and subchondral bone. All these tissue types, in addi-
tion to synovium (SY), perichondrium, fat pad and joint capsule,
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co-operate to optimize function of thewhole joint organ, and injury
to any one or more can be expected to elicit a multi-tissue post-
injury wound repair response. Injury to the joint can involve
traumatic events, such as intra-articular fractures, ligament tears
and/or meniscal damage; in a broader sense, it can also be non-
traumatic and encompass aberrant biomechanics, due to varus or
valgus malalignment, contralateral adaptations to joint replace-
ment surgery or growth abnormalities. It is outside the scope of this
article to review the extensive clinical literature on these topics,
however it is now generally accepted that any such joint injury very
often results in the initiation and/or progression of human and
animal OA1e5.

The post-injury joint responses have been documented by
radiographic and magnetic resonance imaging (MRI)-based
methods, and this has provided a comprehensive database of
ublished by Elsevier Ltd. All rights reserved.
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location-specific and tissue-specific changes4,6e17. For example,
rupture of the anterior cruciate ligament (ACL) results in localized
CA matrix changes, and because of the anatomy of the ACL, the
damage is usually most extensive on the posterior aspect of the
lateral tibial plateau and lateral femoral condyle6. Such damage can
be long-lived, since even 1 year after ACL reconstruction, the CA
overlying a bone bruise may still exhibit altered MRI signals8. Non-
traumatic injury, such as chronic varus overloading, has also been
shown to result in both subchondral bone attrition17 and thinning
of the articular CA in the overloaded sub-compartment9.

Key mediators of soft tissue and fracture repair in OA joints

Placing a pathological process in the context of normal physi-
ology often brings important insights which might otherwise
remain hidden. In essence, all healing responses are aimed at
restoring a functional tissue architecture through steps of inflam-
mation, progenitor cell migration, proliferation, differentiation, and
finally matrix restoration18e21. Despite this paradigm, joint tissue
injury commonly results in degenerative, rather than regenerative
changes in the articular CA.

A widely supported explanation for this is that joint injury
activates pathways that result in transformation of the stable
articular chondrocyte to a hypertrophic phenotype, and that this
terminal differentiation results in CA matrix autolysis and tissue
degeneration. On the other hand, the injury response within or
above subchondral bone can also be viewed as a recapitulation of
the process of bone fracture healing, in which chondrocytes
produce a stabilizing cartilaginous fracture callus. Subsequently the
cells hypertrophy, and the associated matrix is resorbed during
replacement with bone. In addition, severe joint trauma, such as
Fig. 1. Schematic of tissue and cell responses to TGFb1 that result in remodeling and destr
hypertropic chondrocytes and fibroblastic cells. Pluripotent progenitor cells in the superficial z
clones.Mediators released as a result of soft-tissuewound-healing (Joint Space) or fracture rep
formation and cellular differentiation. TGFb1 signaling in the presence of ADAMTS5 can prom
occurs, resulting in chondrogenic responses and pro-anabolic activity in chondrocytes. The c
ACL rupture, is often accompanied by not only impact injury to the
CA8, but also subchondral microfractures and extensive bone
bruising22e24 which is further characterized by necrotic and
fibrogenic regions, and microtrabecular fractures with sclerosis8,22.
In addition, subchondral microfractures with active callus forma-
tion have been reported22,25 and the sclerosis around such fractures
also suggests an attempted fracture healing response. Indeed, in
a study of the osteochondral junction in OA, both VEGF and PDGF
proteins have been identified in chondrocytic cells associated with
fibrovascular tissue26. Further, a role for these mediators in osteo-
blasts of the subchondral bone plate is consistent with the finding
that the expression levels of VEGF, and the abundance of inter-
leukin (IL)6, IL8, and transforming growth factor beta (TGFb1) are
significantly higher in osteoblasts from sclerotic bone than from
normal27,28. Therefore microfracture, bone bruising and sclerosis
may also alter mediator levels in the fluidefilled perforating
channels of the subchondral bone29 and thereby induce progenitor
cell proliferation and migration into the deep zones of the CA30.

However, injury to the soft tissues of the joint space (meniscus,
ligaments, joint capsule) activates a soft-tissue wound-healing
response, much as in dermal repair, and such an environment in the
joint would lead to transition of chondrocytes (and progenitors) to
a fibrogenic phenotype (see schematic, Fig. 1). The growth factors,
cytokines and their cellular sources (blood cells, neutrophils,
macrophages, vascular and pluripotent progenitor cells) in the
post-injury joint space are likely the same as those implicated in
dermal wound healing in general (summarized in Table I). These
mediators have been assayed in fluids and tissues from human skin
burns, wounds and grafts31e33 and surgical repairs34 and identified
by the presence of transcripts and/or protein18,35 inmultiplewound
repair models19e21,36. Notably, each have also been identified in
uction of articular CA. OA CA is shown which contains clonal groups of chondrocytes,
one CAor released from the SYand periosteumpost-injury can be incorporated into such
air (Subchondral Bone) response following acute or chronic joint injuries stimulate clonal
ote pro-fibrotic pathway. Inhibition of the enzyme is followed by activation of Smad1,5,8
ell types involved are identified in the boxed area below the scheme.



Table I
Wound healing mediators in dermal and joint tissues showing their source and major effects on cellular responses

Factor Joint tissue source Joint tissue repair responses Wound cell source
[20e23]

Wound healing responses
[20e23]

EGF SY[133]; OA SF[134] Chondrocyte proliferation; ion transport,
decreased matrix production

P,M,F Epithelialization

FGF-2 SY[135e137]; AT[138]; OP[137];
OA SF[139e142]

Anti-apoptotic; prochondrogenic M,EP,END,F Angiogenesis
Granulation tissue
ECM production

TGFb1 CA[143]; SY[144]; OP[137, 145]; OA SF[47, 48] Pro-catabolic (MMP-13); chondrocyte
hypertrophy

P,M,EP,END,F Epithelialization,
Granulation Tissue
Fibroplasia

BMPs SY[152]; CA[146e148]; BO[149, 150];
OA SF[151]

Prochondrogenic; Osteophytes SC Hairfollicle formation

PDGF CA[143]; SY[153, 154]; OA SF[47] Stimulates reparative responses in
fibrochondrocytes; anti-hypertrophic

P,M,F Granulation tissue
Fibroplasia
Contraction

VEGF CA[155e159,163]; SY[158e161], AT[138];
OA SF[47, 162]

Delays reparative responses in
meniscus and CA

P,N,M,END,F Angiogenesis

IL1b CA[143]; SY[180]; post ACLT SF[164e167];
OA SF[48, 167e170]

CA and meniscal matrix degradation N,M,EP Inflammation
Epithelialization

IL6 CA[171, 172]; AT[138, 173]; PC[174];
Post ACL SF[164, 175]; OA SF[48, 169]

CA matrix degradation N,M,EP Inflammation
Epithelialization

TNFa CA[143]; SY[176]; AT[138]; Post ACLT
SF[167,170,175, 177,178]; OA SF[48,168,169].

CA matrix degradation N,M,EP Inflammation
Epithelialization

Abbreviations: ACLT: Anterior cruciate ligament tear; AT: Adipose tissue; OP: Osteophyte; PC: Plasma Cells; END: endothelial cells; EP: epithelial cells; F: Fibroblasts;
M: Macrophages; N: Neutrophils; P: Platelets.
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joint tissues and synovial fluids (SFs) (see Table I) and the likely
roles for each in joint tissue repair responses have also been
described in both in vivo and in vitro model systems37e42.

A pivotal role for TGFb1 in the wound environment of the OA
joint

In considering the likelihood that any of these mediators might
affect cellular behavior within the injured joint environment, it is
notable that the mean concentration of TGFb1 in OA SFs ranges from
0.75 ng/ml43 to 4.95 ng/ml44, which is similar to that found in dermal
woundfluids32e34. Perhapsmore than anyothermediator, TGFb1has
been found to regulate a verywide range of cellular behaviors, which
include cell proliferation and migration, inflammation, control of
immune functions, carcinogenesis and extracellular matrix (ECM)
synthesis anddegradation. It is for these reasons that a pivotal role for
TGFb1 in responses to joint injury and OA development has been
studied and discussed in such detail45e50. In relation to human OA,
TGFb1 has historically been considered as a central anabolic or
reparative mediator, together with IGF-151, FGF-252 and bone
morphogenetic protein (BMP)-753. In addition, TGFbs are also regu-
lators in the in vitro differentiation of mesenchymal progenitors to
reparative chondrocytes, using 3D culture conditions54e56.

A central role for TGFb1-induced signaling in human OA is also
supported by recent genetic linkage analyses. Firstly, a single
nucleotide polymorphism (SNP) in human Smad3 has been linked
to the incidence of hip and knee OA in a 527 patient cohort57 and
secondly, a polymorphism in the human asporin gene has been
linked to hip OA58,59, a finding which is relevant since asporin60

interferes with TGFb1 binding to TGFbRII. An important consider-
ation in interpreting these associations is that at present, there is
little information as to which joint tissue(s) are primarily affected
by the mutations, and how the mutated molecule affects disease
incidence or progression.

Mechanisms by which TGFbb1 signaling causes activation of
‘anabolic’ pathways vary with cell type and the ECM composition of
a particular tissue61. These signaling pathways thereby drive critical
repair events, but they are also responsible for epithelial mesen-
chymal transition (EMT) transformations62,63 underlying fibrogenic
disorders64,65 and tumorogenesis66,67. The complex signal trans-
duction events which follow TGFb1 interaction with its kinase
receptors and co-receptors has been extensively studied and is
summarized in a number of recent reviews68,69. In brief, substrates
for TGFb1-induced phosphorylation include the Smad family of
proteins, as well as ERK, JNK and p38, and the RhoGTPases (Cd42,
Rac1, RhoA)70,71 (Fig. 2). In addition, TGFb1 signaling can be regu-
lated by the presence of other soluble mediators such as EGF72,73,
bFGF-274, angiotensin75, interferon (INF)g76, TNFa75,77 and the
activity of other receptors such as EGFR78 and the estrogen
receptor79.

TGFb1 signaling requires the participation of ECM and cell-
surface components which regulate homo- and heterodimeriza-
tion of TGFbRs61,80. For example, when TGFb1 binds to endoglin in
the presence of TGFbRII, Smad1/5 phosphorylation is enhanced and
Smad2 phosphorylation inhibited81. Of particular interest with
respect to CA matrix turnover, hyaluronan (HA)/CD44 complexes
can regulate TGFb1-dependent ECM production in both tissue
regeneration and fibrosis82e85 and this is likely mediated by cell
membrane dynamics that create focal adhesions (FAs) and lipid
rafts. Such membrane microdomains sequester adapter proteins
which, in turn, regulate endocytotic trafficking of complexes86e89,
such as TGFb1/TGFbRII/activin receptor-like kinase 1 (ALK1).

Within this complex framework, TGFb1-mediated signaling has
beenwidely implicated in the progression of OA, primarily through
an apparent capacity to regulate the conversion of a normal artic-
ular chondrocytes to the “hypertrophic” phenotype. For example,
IHC andmRNA studies in mouse and human OA CAs have shown an
enrichment of ALK1-positive relative to activin receptor-like kinase
5 (ALK5)-positive cells. This change was associated in human
samples with enhanced MMP-13 expression90, which was inter-
preted as resulting from a phenotypic switch to a hypertrophic OA
phenotype46,91,92. In separate studies on this question, it has been
shown that the blockade of ALK5-mediated TGFb1 signaling seen in
Smad3�/� mice, accelerates chondrocyte hypertrophy and also
that murine over-expression of Smurf-2, which inhibits TGFb1/
Smad-3 signaling, results in spontaneous CA loss in vivo49,93. In
related studies with SV-immortalized murine chondrocytes, over-
expression of transfected ALK1 or blocking ALK5 with siRNA also



Fig. 2. Schematic of ADAMTS5-mediated control of pro-fibrotic/prochondrogenic TGFb1 signaling in mesenchymal cells. The schematic describes the proposed modulation of TGFb1
signal transduction through the ALK5-fibrogenic pathway and the ALK1-chondrogenic pathway. ALK5/Smad2,3 signaling is shown to require ADAMTS5 and can be further sup-
ported by pFAK at focal adhesion and pERK1,2 generated via the non-canonical TGFb1 pathway. ALK1/Smad1,5,8 occurs in the absence of ADAMTS5 when it is enhanced by the
presence of HA-aggrecan bound near the cell surface by CD44.
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induced MMP-13 expression93. In summary, this series of
papers46,49,90e94 have linked a high level of TGFb1/ALK1-mediated
signaling, along with a high expression of col10 andMMP-13, to the
emergence of hypertrophic chondrocytes. Since col10 and MMP-13
have been widely interpreted as markers of hypertrophic or
“osteoarthritic” chondrocytes, this has engendered a general
agreement that TGFb1 signaling through the ALK1/Smad1/5/8
pathway in chondrocytes is a hallmark of OA development81,92,93,95.

As stated above, we are proposing in this review that the
alternative pathway of TGFb1 signaling, through ALK5/Smad2/3,
causes the transition of chondrocytes and chondroprogenitors to
a fibrogenic phenotype, resulting in many of the destructive
processes of OA, such as aggrecan depletion, which are initiated at
the articular surface and progress throughout the tissue96e98.

Several pivotal papers, also consistent with a central role for the
TGFb1-ALK5 axis in CA matrix destruction in vivo have been
published recently. The first describes dosing growing rats with an
antifibrogenic agent (GW788388) targeted specifically at
ALK5-mediated TGFb1 signaling99. It was found, that blocking ALK5
had profound effects on the chondrocyte and matrix dynamics of
the epiphyseal growth plate. Specifically, inhibition of ALK5
signaling resulted in an elevated expression of prochondrogenic
genes in the perichondrium, and in the resting, proliferative and
pre-hypertrophic zones of the plate, along with an elevated
proteoglycan abundance and a decrease in collagen-resorbing
proteinases. These data fully support the model presented in
Fig. 2, which predicts the activation of ALK1-mediated chondro-
genesis as a result of inhibition of ALK5-mediated fibrogenesis. Two
other papers100,101 are also consistent with the model implicating
A-Disintegrin-And-Metalloproteinase-with-Thrombospondin-like-
Sequences-5 (ADAMTS5) in the control of TGFb1 signaling. These
workers showed that high ADAMTS5 activity, generated in
a microRNA-140 knockout mouse, is accompanied by a reduction in
aggrecan in the growth plate, mild-dwarfism and early-onset OA.
Conversely, over-expression of microRNA-140 in CA, reduced
ADAMTS5 levels and protected the mice against aggrecan loss in an
inflammatorymurinemodel. In a related paper102 it was shown that
in addition to ADAMTS5 inhibition, miRNA-140 directly suppresses
Smad3 levels, further suggesting a mechanistic link between
ADAMTS5 activity and control of TGFb1 signaling.

Pro-fibrogenic ALK-5 mediated TGFb1 signaling in OA CA

Recent studies from our own laboratory103e107, and
others108e113, have indicated that the damaging effects of TGFb1
signaling in OA results from a loss of prochondrogenic
ALK1-signaling and up-regulation of the ALK5 pathway. For
example, three independent gene expression analyses of normal
and OA human CA112e114 showed a significant up-regulation of col1
and/or col3 (w10-fold) in OA, but no enhancement of col10,
consistent with the conclusion that many chondrocytes in human
OA CAs have acquired a fibrogenic phenotype. Such a transition is
also supported by immunohistochemistry of CAs removed from
human and animal knees early after joint injury and at joint
replacement111,115,116. Thus, a microscopic pannus-like tissue over
the CA surface was seen in the majority of OA joints inspected in
one study116, and on IHC the cells stained positive for aggrecan and
Col2 but also for Col1, MMP-1, MMP-3 and MMP-13. In addition,
chondrocytes near lesions in OA CAs have been shown to stain
strongly for alpha-smooth muscle actin (aSMA), a standard marker
for TGFb1-mediated conversion of fibroblasts to myofibroblasts in
fibrous tissues117. Lastly, a pro-fibrogenic role for TGFb1 in OA is also
consistent with the common observation that in the human
disease, the articular CA is gradually replaced by fibroCA111,118,119.

The phenotypic plasticity of mesenchymal progenitors in OA

A large number of groups have now reported that OA progres-
sion is accompanied by the accumulation of mesenchymal
progenitor cells in joint tissues and fluids (Fig. 1). Such cells have
been found to populate sites of CA destruction120 and may be
concentrated in the superficial layer of the tissue in early OA121.
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Mesenchymal progenitors can also be isolated from the SY122,123

and the infrapatellar fat pad124 of OA joints. In addition, injurious
microfracture of subchondral bone can activate and recruit
marrow- or periosteum-derived progenitor cells to the deep and
calcified CA zones in the immediate vicinity125.

Of high significance in this field is the pioneering work of two
groups who have studied progenitors isolated from human SFs and
synovial membranes. Particularly interesting is the finding that the
concentration of progenitors in OA SFs, particularly after injury, is
about 20-fold higher than in RA, consistent with them being
derived from injured joint structures rather than the bone
marrow126,127. Indeed, single cell marker analysis supports the view
that SF cells with multi-lineage potential are derived from the SY
itself. Further characterization of these cells has suggested that they
also have the capacity to repair fibrous tissues such as ligament and
meniscus128, as shown by cell tracking studies in animal models. In
vitro studies with fluid-derived progenitors have also illustrated
their adherence to and migration into damaged CA surfaces129,
consistent with studies on superficial layer progenitors which have
been shown to engraft into fibrous structural tissues such as bone
and tendon130. It therefore appears that the progenitors which
accumulate in the joint after traumatic injury, and also in estab-
lished OA, have the plasticity to transition into either chondrogenic
cells for CA repair or fibrogenic cells for repair of joint structures
such as ligament and meniscus.

With respect to the potential for CA repair with such cell pop-
ulations, there has been a long history of attempts to optimize
reparative conditions for both exogenous and endogenous cell
sources. Recent reviews on the subject131e133 continue to describe
limitations related to the problems of cell source, phenotypic
stability and poor repair tissue integration. Clinically, procedures
which encourage endogenous progenitors to enter the joint, such
as subchondral abrasion, have achieved some success, however in
general the tissue formed is fibro-cartilaginous and has poor
biomechanical properties.

ADAMTS5-regulation of TGFb1 signaling e a new role for
pericellular aggrecan turnover

Details of the mechanism by which fibrogenic cells can readily
arise in OA joints, were obtained from our recent studies with
ADAMTS5�/� mice103,106,134. Advanced knee joint OA was induced
in mice using the DMM injury model or the newly developed TTR
model103. The TTRmodel involves intra-articular injection of TGFb1,
to mimic acute injury45,135, followed by 2 weeks of uphill treadmill
to maintain aberrant and stressful loading on the knee. With wild-
type mice in both OA models, CA erosion was found to be spatially
associated with a fibrous overgrowth from the peri-articular soft
tissues, such as SY, periosteum and meniscal attachments. Most
significantly however, it was found that in ADAMTS5�/� mice, the
overgrowth by fibrogenic cells and matrix did not occur and CA
erosion was eliminated. Instead, in joint regions of maximal
biomechanical stress, there was no aggrecan loss but higher than
normal amounts of aggrecan were deposited in the CA. This illus-
trated, unexpectedly, that a transition from TGFb1-induced fibrosis
to chondrogenesis could be achieved in vivo simply by the elimi-
nation of ADAMTS5 activity (Fig. 2).

This conclusionwas further validated by the remarkable finding
that the post-injury chondrogenic response seen in the joint tissues
of ADAMTS5�/� mice also occurs during dermal repair in these
same mice134. However, in this case the accumulation of aggrecan
leads to failure of the healing response, due to the absence of the
appropriatedermalfibroblast population. Further, itwas shown that
successful dermal regeneration inwild-typemice is accompaniedby
an increased expression of ADAMTS5, the pro-fibrogenic genes col1,
col3, TGFb1 and TGFbRII, and also ALK5 in late-stage granulation
tissue, prior to wound contraction and dermal regeneration. In
contrast, in the dermis of ADAMTS5�/� mice the expression of
these fibrogenic genes was not enhanced. Instead, prochondrogenic
genes such as aggrecan, ALK1 and the activin receptors [activin A
receptor 1 (ACVR1), activin A receptor 2a (ACVR2a) and activin A
receptor-like 1 (ACVRL1)] were strongly upregulated throughout
the wound healing period. Most significantly, these differences in
the TGFb1 signaling response were also seen in primary cultures of
newborn skin fibroblasts from the two mouse strains. Thus, TGFb1
treatment of wild-type cells resulted in the expected fibrogenic
ALK5/Smad2/3-phophorylation, whereas ADAMTS5�/� cells,
treated under the same conditions, lacked the Smad2/3 phosphor-
ylation response, but had robust ALK1/Smad1/5/8 phosphorylation.
In addition to this, and consistent with the need for cellematrix
interactions in TGFb1 signaling, it was found that the ALK1-
mediated phosphorylation response by ADAMTS5�/� fibroblasts
was itself dependent on a pericellular CD44-HA-aggrecan matrix.
Thus elimination of HA-aggrecan from the pericellular space, by
CD44 knockout in ADAMTS5�/� mice or by treatment of
ADAMTS5�/� cell layers with Streptomyces hyaluronidase, resulted
in the restoration of fibrogenic TGFb1-induced Smad2/3 phos-
phorylation (Fig. 2).

A similar modulation of TGFb1 signaling by removal of peri-
cellular HA-aggrecan has also now been demonstrated in primary
cultures of murine chondrocytes (Gorzki D and Plaas A, unpub-
lished). Treatment of matrix-rich wild-type chondrocytes with
retinoic acid results in complete degradation of the pericellular
aggrecan and transition from a cobblestone to a spindle-shaped
morphology. This transition is accompanied by robust TGFb1-
induced Smad2/3 phosphorylation, and a much diminished
Smad1/5/8 phosphorylation. In contrast, ADAMTS5�/� chon-
drocytes treated with RA showed incomplete aggrecan degradation
and these cells exhibit Smad1/5/8 phosphorylation as the dominant
response to TGFb1. These experiments further underline a central
role for ECM components, in particular HA-aggrecan, in deter-
mining the emphasis and downstream effects of TGFb1 signaling in
both fibrogenic and chondrocytic cells. It therefore seems reason-
able to assume that such a control mechanism applies not only to
resident chondrocytes, but also to uncommitted progenitors
responding to the wound environment.

Conclusions and therapeutic implications

We conclude from these observations that therapeutic inhibi-
tion of TGFb1 signaling through ALK5/Smad2/3 in the post-injury
OA joint should markedly diminish fibrogenic activities and
generate a robust chondrogenic repair response. Data from isolated
cell studies, murine OA models with mutant mice, and human OA
CA gene expression analysis, together indicate that CA repair in vivo
should result from a TGFb1-driven process, in which concurrent
treatment is designed to prevent the emergence of the fibrogenic
phenotype in reparative progenitors. At the same time, our novel
data on the pivotal role of ADAMTS5 in controlling TGFb1 signaling
should motivate new strategies to improve cell-based regenerative
therapies for adult articular CA repair. Put simply, since inhibition of
ADAMTS5 appears to promote TGFb1-driven differentiation of
progenitor cells to chondrocytes (also see136), it seems likely that
CA will form wherever ADAMTS5 activity is blocked and an
appropriate HA-based construct for cellematrix interactions and
aggrecan accumulation is also provided. Refinement of these
strategies for successful in vivo repair will require a more in-depth
understanding of the central role played by ADAMTS5 in regulating
TGFb1-mediated chondrogenic and fibrogenic reactions to tissue
injury.
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