542 research outputs found

    Coordinated Cluster/Double Star Observations of Dayside Reconnection Signatures

    Get PDF
    The recent launch of the equatorial spacecraft of the Double Star mission, TC-1, has provided an unprecedented opportunity to monitor the southern hemisphere dayside magnetopause boundary layer in conjunction with northern hemisphere observations by the quartet of Cluster spacecraft. We present first results of one such situation where, on 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawnside magnetosphere. The observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs) seen both at Cluster and TC-1, which appear to lie north and south of the reconnection line, respectively. In fact, the observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, with Cluster observing northward moving FTEs with +/− polarity, whereas TC-1 sees −/+ polarity FTEs. This assertion is further supported by the application of a model designed to track flux tube motion for the prevailing interplanetary conditions. The results from this model show, in addition, that the low-latitude FTE dynamics are sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF) clock angle in the model suggests that TC-1 should miss the resulting FTEs more often than Cluster and this is borne out by the observations

    Multiparametric determination of genes and their point mutations for identification of beta-lactamases

    Get PDF

    Characterization of CTX-M ESBLs in Enterobacter cloacae, Escherichia coli and Klebsiella pneumoniae clinical isolates from Cairo, Egypt

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high rate of resistance to 3<sup>rd </sup>generation cephalosporins among Enterobacteriaceae isolates from Egypt has been previously reported. This study aims to characterize the resistance mechanism (s) to extended spectrum cephalosporins among resistant clinical isolates at a medical institute in Cairo, Egypt.</p> <p>Methods</p> <p>Nonconsecutive <it>Klebsiella pneumoniae </it>(Kp), <it>Enterobacter cloacae </it>(ENT) and <it>Escherichia coli </it>(EC) isolates were obtained from the clinical laboratory at the medical institute. Antibiotic susceptibility was tested by CLSI disk diffusion and ESBL confirmatory tests. MICs were determined using broth microdilution. Isoelectric focusing (IEF) was used to determine the pI values, inhibitor profiles, and cefotaxime (CTX) hydrolysis by the β-lactamases. PCR and sequencing were performed using <it>bla</it><sub>CTX-M </sub>and IS<it>Ecp1</it>-specific primers, with DNA obtained from the clinical isolates. Conjugation experiments were done to determine the mobility of <it>bla</it><sub>CTX-M</sub>.</p> <p>Results</p> <p>All five clinical isolates were resistant to CTX, and were positive for ESBL screening. IEF revealed multiple β-lactamases produced by each isolate, including a β-lactamase with a pI of 8.0 in Kp and ENT and a β-lactamase with a pI of 9.0 in EC. Both β-lactamases were inhibited by clavulanic acid and hydrolyzed CTX. PCR and sequence analysis identified <it>bla</it><sub>CTX-M-14 </sub>in Kp and ENT and a <it>bla</it><sub>CTX-M-15 </sub>in EC. Both <it>bla</it><sub>CTX-M-14 </sub>and <it>bla</it><sub>CTX-M-15 </sub>were preceded by IS<it>Ecp1 </it>elements as revealed by partial sequence analysis of the upstream region of the <it>bla</it><sub>CTX-M </sub>genes. <it>bla</it><sub>CTX-M-15</sub> was transferable but not <it>bla</it><sub>CTX-M-14</sub>.</p> <p>Conclusion</p> <p>This is the first report of CTX-M-14 in Kp and ENT isolates from Egypt, the Middle East and North Africa.</p

    Single stranded fully Modified-Phosphorothioate oligonucleotides can induce structured nuclear inclusions, alter nuclear protein localization and disturb the transcriptome In Vitro

    Get PDF
    Oligonucleotides and nucleic acid analogues that alter gene expression are now showing therapeutic promise in human disease. Whilst the modification of synthetic nucleic acids to protect against nuclease degradation and to influence drug function is common practice, such modifications may also confer unexpected physicochemical and biological properties. Gapmer mixed-modified and DNA oligonucleotides on a phosphorothioate backbone can bind non-specifically to intracellular proteins to form a variety of toxic inclusions, driven by the phosphorothioate linkages, but also influenced by the oligonucleotide sequence. Recently, the non-antisense or other off-target effects of 2′ O- fully modified phosphorothioate linkage oligonucleotides are becoming better understood. Here, we report chemistry-specific effects of oligonucleotides composed of modified or unmodified bases, with phosphorothioate linkages, on subnuclear organelles and show altered distribution of nuclear proteins, the appearance of highly stable and strikingly structured nuclear inclusions, and disturbed RNA processing in primary human fibroblasts and other cultured cells. Phosphodiester, phosphorodiamidate morpholino oligomers, and annealed complimentary phosphorothioate oligomer duplexes elicited no such consequences. Disruption of subnuclear structures and proteins elicit severe phenotypic disturbances, revealed by transcriptomic analysis of transfected fibroblasts exhibiting such disruption. Our data add to the growing body of evidence of off-target effects of some phosphorothioate nucleic acid drugs in primary cells and suggest alternative approaches to mitigate these effects

    Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli

    Get PDF
    Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that these bacteria are metabolically fitter and therefore more successful human pathogens

    Cluster observations of a field aligned current at the dawn flank of a bursty bulk flow

    Get PDF
    This article describes observations of a bursty bulk flow (BBF) in the outer central plasma sheet. The observations are made with the Cluster satellites, located approximately 19 &lt;I&gt;R&lt;sub&gt;E&lt;/sub&gt;&lt;/I&gt; downtail, close to the midnight sector in the Southern Hemisphere. 40&amp;ndash;60 s after Cluster first detected the BBF, there was a large bipolar perturbation in the magnetic field. A Grad-Shafranov reconstruction has revealed that this is created by a field-aligned current at the flank of the BBF. Further analysis of the plasma moments has shown that the BBF has the properties of a depleted flux tube. Depleted flux tubes are an important theoretical model for how plasma and magnetic flux can be transported Earthward in the magnetotail as part of the Dungey cycle. The field aligned current is directed Earthward and is located at the dawn side of the BBF. Thus, it is consistent with the magnetic shear at the flank of an Earthward moving BBF. The total current has been estimated to be about 0.1 MA

    Isolation and purification of an enzyme hydrolyzing ochratoxin A from aspergillus niger

    Get PDF
    Ochratoxin A is a mycotoxin produced by several Aspergillus and some Penicillium species which may be present in food and feed products. It can be enzymatically hydrolyzed into ochratoxin α and l-β-phenylalanine, thereby decreasing its toxicity. The ochratoxin A degradation capacity of Aspergillus niger is well known and here we report the isolation and purification of a novel enzyme from A. niger that hydrolyzes this mycotoxin. A wheat germ medium supplemented with ochratoxin A was used to produce the enzyme, which was purified from culture filtrate by acetone precipitation and anion exchange chromatography. An overall purification of 2.5-fold with a recovery of 68% and a final specific activity of 36 U/mg was obtained. The enzyme is a metalloenzyme as it was inhibited at 10 mM EDTA, whereas PMSF had no effect. The ochratoxin A hydrolytic enzyme presented a V max of 0.44 μM/min and a K m of 0.5 mM when the reaction was carried out at pH 7.5 and 37°C.Fundação para a Ciência e a Tecnologia (FCT

    Characterising splicing defects of ABCA4 variants within exons 13–50 in patient-derived fibroblasts

    Get PDF
    The ATP-binding cassette subfamily A member 4 gene (ABCA4)-associated retinopathy, Stargardt disease, is the most common monogenic inherited retinal disease. Given the pathogenicity of numerous ABCA4 variants is yet to be examined and a significant proportion (more than 15%) of ABCA4 variants are categorized as splice variants in silico, we therefore established a fibroblast-based splice assay to analyze ABCA4 variants in an Australian Stargardt disease cohort and characterize the pathogenic mechanisms of ABCA4 variants. A cohort of 67 patients clinically diagnosed with Stargardt disease was recruited. Genomic DNA was analysed using a commercial panel for ABCA4 variant detection and the consequences of ABCA4 variants were predicted in silico. Dermal fibroblasts were propagated from skin biopsies, total RNA was extracted and the ABCA4 transcript was amplified by RT-PCR. Our analysis identified a total of 67 unique alleles carrying 74 unique variants. The most prevalent splice-affecting complex allele c.[5461-10T > C; 5603A > T] was carried by 10% of patients in a compound heterozygous state. ABCA4 transcripts from exon 13 to exon 50 were readily detected in fibroblasts. In this region, aberrant splicing was evident in 10 out of 57 variant transcripts (18%), carried by 19 patients (28%). Patient-derived fibroblasts provide a feasible platform for identification of ABCA4 splice variants located within exons 13–50. Experimental evidence of aberrant splicing contributes to the pathogenic classification for ABCA4 variants. Moreover, identification of variants that affect splicing processes provides opportunities for intervention, in particular antisense oligonucleotide-mediated splice correction
    • …
    corecore