194 research outputs found

    Biochemical characteristics and bacterial community structure of the sea surface microlayer in the South Pacific Ocean

    Get PDF
    The chemical and biological characteristics of the surface microlayer were determined during a transect across the South Pacific Ocean in October-December 2004. Concentrations of particulate organic carbon (1.3 to 7.6-fold) and nitrogen (1.4 to 7-fold), and POC:PON ratios were consistently higher in the surface microlayer as compared to surface waters (5 m). The large variability in particulate organic matter enrichment was negatively correlated to wind speed. No enhanced concentrations of dissolved organic carbon were detectable in the surface microlayer as compared to 5 m, but chromophoric dissolved organic matter was markedly enriched (by 2 to 4-fold) at all sites. Based on pigment analysis and cell counts, no consistent enrichment of any of the major components of the autotrophic and heterotrophic microbial community was detectable. CE-SSCP fingerprints and CARD FISH revealed that the bacterial communities present in the surface microlayer had close similarity (>76%) to those in surface waters. By contrast, bacterial heterotrophic production (<sup>3</sup>H-leucine incorporation) was consistently lower in the surface microlayer than in surface waters. By applying CARD-FISH and microautoradiography, we observed that <i>Bacteroidetes</i> and <i>Gammaproteobacteria</i> dominated leucine uptake in the surface microlayer, while in surface waters <i>Bacteroidetes</i> and <i>Alphaproteobacteria</i> were the major groups accounting for leucine incorporation. Our results demonstrate that the microbial community in the surface microlayer closely resembles that of the surface waters of the open ocean. Even a short residence in the surface microlayer influences leucine incorporation by different bacterial groups, probably as a response to the differences in the physical and chemical nature of the two layers

    Left sided inferior vena cava duplication and venous thromboembolism: case report and review of literature

    Get PDF
    The etiology of venous thromboembolism in young patients is frequently associated with hereditary coagulation abnormalities, immunologic diseases, and neoplasia. The advent of radiological advances, namely Computed Tomography (CT) scans and venography has identified vena cava malformations as a new etiologic factor worthy of consideration. In this case report, we describe the unusual occurrence of venous thromboembolism in association with a duplicated inferior vena cava. Duplications of the inferior vena cava (IVC) are seen with an incidence of 0.2% to 3.0% in the general population. Embryogenesis of the IVC is a complex process involving the intricate formation and regression of numerous anastomoses, potentially leading to various anomalies. We present a 23-year-old Caucasian woman with IVC duplication who developed a deep venous thrombosis and multiple pulmonary emboli. Anomaly of the IVC is a rare example of a congenital condition that predisposes to thromboembolism, presumably by favoring venous stasis. This diagnosis should be considered in patients under the age of 30 with spontaneous occurrence of blood clots

    Patent abdominal subcutaneous veins caused by congenital absence of the inferior vena cava: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Patent paraumbilical and abdominal subcutaneous veins are found frequently as collaterals in patients due to portal hypertension mainly in liver cirrhosis.</p> <p>Case presentation</p> <p>For evaluation of portal hypertension in a 72-year-old Caucasian man without liver cirrhosis, magnetic resonance imaging with gadolinium contrast-enhancement was performed and demonstrated a missing inferior vena cava. A blood return from the lower extremities was shown through enlarged collateral veins of the abdominal wall, vena azygos and hemiazygos continuation, and multiple liver veins emptying into the right cardiac atrium. We describe a rare case of abdominal subcutaneous wall veins as collaterals caused by a congenitally absent infrarenal inferior vena cava with preservation of a hypoplastic suprarenal segment.</p> <p>Conclusion</p> <p>Knowledge of these congenital variations can be of clinical importance and it is imperative for the reporting radiologist to identify these anomalies as they can have a significant impact on the clinical management of the patient.</p

    Iron budgets for three distinct biogeochemical sites around the Kerguelen archipelago (Southern Ocean) during the natural fertilisation experiment KEOPS-2

    Get PDF
    Iron availability in the Southern Ocean controls phytoplankton growth, community composition and the uptake of atmospheric CO2 by the biological pump. The KEOPS-2 experiment took place around the Kerguelen plateau in the Indian sector of the Southern Ocean, a region naturally fertilised with iron at the scale of hundreds to thousands of square kilometres, producing a mosaic of spring blooms which showed distinct biological and biogeochemical responses to fertilisation. This paper presents biogeochemical iron budgets (incorporating vertical and lateral supply, internal cycling, and sinks) for three contrasting sites: an upstream high-nutrient low-chlorophyll reference, over the plateau, and in the o�shore plume east of Kerguelen Island. These budgets show that distinct regional environments driven by complex circulation and transport pathways are responsible for di�erences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. Iron supply from “new” sources to surface waters of the plume was double that above the plateau and 20 times greater than at the reference site, whilst iron demand (measured by cellular uptake) in the plume was similar to the plateau but 40 times greater than the reference. “Recycled” iron supply by bacterial regeneration and zooplankton grazing was a relative minor component at all sites (< 8% of “new” supply), in contrast to earlier findings from other biogeochemical iron budgets in the Southern Ocean. Over the plateau, a particulate iron dissolution term of 2.5% was invoked to balance the budget; this approximately doubled the standing stock of dissolved iron in the mixed layer. The exchange of iron between dissolved, biogenic and lithogenic particulate pools was highly dynamic in time and space, resulting in a decoupling of iron supply and carbon export and, importantly, controlling the effi�ciency of fertilisation

    miR-132 Enhances Dendritic Morphogenesis, Spine Density, Synaptic Integration, and Survival of Newborn Olfactory Bulb Neurons

    Get PDF
    An array of signals regulating the early stages of postnatal subventricular zone (SVZ) neurogenesis has been identified, but much less is known regarding the molecules controlling late stages. Here, we investigated the function of the activity-dependent and morphogenic microRNA miR-132 on the synaptic integration and survival of olfactory bulb (OB) neurons born in the neonatal SVZ. In situ hybridization revealed that miR-132 expression occurs at the onset of synaptic integration in the OB. Using in vivo electroporation we found that sequestration of miR-132 using a sponge-based strategy led to a reduced dendritic complexity and spine density while overexpression had the opposite effects. These effects were mirrored with respective changes in the frequency of GABAergic and glutamatergic synaptic inputs reflecting altered synaptic integration. In addition, timely directed overexpression of miR-132 at the onset of synaptic integration using an inducible approach led to a significant increase in the survival of newborn neurons. These data suggest that miR-132 forms the basis of a structural plasticity program seen in SVZ-OB postnatal neurogenesis. miR-132 overexpression in transplanted neurons may thus hold promise for enhancing neuronal survival and improving the outcome of transplant therapies

    The Role of Dicer Protein Partners in the Processing of MicroRNA Precursors

    Get PDF
    One of the cellular functions of the ribonuclease Dicer is to process microRNA precursors (pre-miRNAs) into mature microRNAs (miRNAs). Human Dicer performs this function in cooperation with its protein partners, AGO2, PACT and TRBP. The exact role of these accessory proteins in Dicer activity is still poorly understood. In this study, we used the northern blotting technique to investigate pre-miRNA cleavage efficiency and specificity after depletion of AGO2, PACT and TRBP by RNAi. The results showed that the inhibition of either Dicer protein partner substantially affected not only miRNA levels but also pre-miRNA levels, and it had a rather minor effect on the specificity of Dicer cleavage. The analysis of the Dicer cleavage products generated in vitro revealed the presence of a cleavage intermediate when pre-miRNA was processed by recombinant Dicer alone. This intermediate was not observed during pre-miRNA cleavage by endogenous Dicer. We demonstrate that AGO2, PACT and TRBP were required for the efficient functioning of Dicer in cells, and we suggest that one of the roles of these proteins is to assure better synchronization of cleavages triggered by two RNase III domains of Dicer

    Invertebrate 7SK snRNAs

    Get PDF
    7SK RNA is a highly abundant noncoding RNA in mammalian cells whose function in transcriptional regulation has only recently been elucidated. Despite its highly conserved sequence throughout vertebrates, all attempts to discover 7SK RNA homologues in invertebrate species have failed so far. Here we report on a combined experimental and computational survey that succeeded in discovering 7SK RNAs in most of the major deuterostome clades and in two protostome phyla: mollusks and annelids. Despite major efforts, no candidates were found in any of the many available ecdysozoan genomes, however. The additional sequence data confirm the evolutionary conservation and hence functional importance of the previously described 3′ and 5′ stem-loop motifs, and provide evidence for a third, structurally well-conserved domain

    Fate of Allochthonous Dissolved Organic Carbon in Lakes: A Quantitative Approach

    Get PDF
    Inputs of dissolved organic carbon (DOC) to lakes derived from the surrounding landscape can be stored, mineralized or passed to downstream ecosystems. The balance among these OC fates depends on a suite of physical, chemical, and biological processes within the lake, as well as the degree of recalcintrance of the allochthonous DOC load. The relative importance of these processes has not been well quantified due to the complex nature of lakes, as well as challenges in scaling DOC degradation experiments under controlled conditions to the whole lake scale. We used a coupled hydrodynamic-water quality model to simulate broad ranges in lake area and DOC, two characteristics important to processing allochthonous carbon through their influences on lake temperature, mixing depth and hydrology. We calibrated the model to four lakes from the North Temperate Lakes Long Term Ecological Research site, and simulated an additional 12 ‘hypothetical’ lakes to fill the gradients in lake size and DOC concentration. For each lake, we tested several mineralization rates (range: 0.001 d−1 to 0.010 d−1) representative of the range found in the literature. We found that mineralization rates at the ecosystem scale were roughly half the values from laboratory experiments, due to relatively cool water temperatures and other lake-specific factors that influence water temperature and hydrologic residence time. Results from simulations indicated that the fate of allochthonous DOC was controlled primarily by the mineralization rate and the hydrologic residence time. Lakes with residence times <1 year exported approximately 60% of the DOC, whereas lakes with residence times >6 years mineralized approximately 60% of the DOC. DOC fate in lakes can be determined with a few relatively easily measured factors, such as lake morphometry, residence time, and temperature, assuming we know the recalcitrance of the DOC
    corecore