234 research outputs found

    Discovery of a wandering radio jet base after a large X-ray flare in the blazar Markarian 421

    Full text link
    We investigate the location of the radio jet bases ("radio cores") of blazars in radio images, and their stationarity by means of dense very long baseline interferometry (VLBI) observations. In order to measure the position of a radio core, we conducted 12 epoch astrometric observation of the blazar Markarian 421 with the VLBI Exploration of Radio Astrometry at 22 GHz immediately after a large X-ray flare, which occurred in the middle of 2011 September. For the first time, we find that the radio core is not stationary but rather changes its location toward 0.5 mas downstream. This angular scale corresponds to the de-projected length of a scale of 10510^5 Schwarzschild radii (Rs) at the distance of Markarian~421. This radio-core wandering may be a new type of manifestation associated with the phenomena of large X-ray flares.Comment: 6 pages, 4 figures, 1 table, has been published in ApJ Letter

    Rotating and infalling motion around the high-mass young stellar object Cepheus A-HW2 observed with the methanol maser at 6.7 GHz

    Full text link
    We have measured the internal proper motions of the 6.7 GHz methanol masers associated with Cepheus A (Cep A) HW2 using Very Long Baseline Interferometery (VLBI) observations. We conducted three epochs of VLBI monitoring observations of the 6.7 GHz methanol masers in Cep A-HW2 with the Japanese VLBI Network (JVN) over the period between 2006-2008. In 2006, we were able to use phase-referencing to measure the absolute coordinates of the maser emission with an accuracy of a few milliarcseconds. We compared the maser distribution with other molecular line observations that trace the rotating disk. We measured the internal proper motions for 29 methanol maser spots, of which 19 were identified at all three epochs and the remaining ten at only two epochs. The magnitude of proper motions ranged from 0.2 to 7.4 km/s, with an average of 3.1 km/s. Although there are large uncertainties in the observed internal proper motions of the methanol maser spots in Cep A, they are well fitted by a disk that includes both rotation and infall velocity components. The derived rotation and infall velocities at the disk radius of 680 au are 0.5 +- 0.7 and 1.8 +- 0.7 km/s, respectively. Assuming that the modeled disk motion accurately represents the accretion disk around the Cep A-HW2 high-mass YSO, we estimated the mass infall rate to be 3 x 10^{-4} n_8 Msun/yr (n_8 is the gas volume density in units of 10^{8} cm^{-3}). The combination of the estimated mass infall rate and the magnitude of the fitted infall velocity suggests that Cep A-HW2 is at an evolutionary phase of active gas accretion from the disk onto the central high-mass YSO. The infall momentum rate is estimated to be 5 x 10^{-4} n_8 Msun/yr km/s, which is larger than the estimated stellar radiation pressure of the HW2 object, supporting the hypothesis that this object is in an active gas accretion phase.Comment: 16 pages, 6 figures, 5 tables, accepted for publication in Astronomy & Astrophysic

    An automated archival VLA transients survey

    Full text link
    In this paper we present the results of a survey for radio transients using data obtained from the Very Large Array archive. We have reduced, using a pipeline procedure, 5037 observations of the most common pointings - i.e. the calibrator fields. These fields typically contain a relatively bright point source and are used to calibrate `target' observations: they are therefore rarely imaged themselves. The observations used span a time range ~ 1984 - 2008 and consist of eight different pointings, three different frequencies (8.4, 4.8 and 1.4 GHz) and have a total observing time of 435 hours. We have searched for transient and variable radio sources within these observations using components from the prototype LOFAR transient detection system. In this paper we present the methodology for reducing large volumes of Very Large Array data; and we also present a brief overview of the prototype LOFAR transient detection algorithms. No radio transients were detected in this survey, therefore we place an upper limit on the snapshot rate of GHz frequency transients > 8.0 mJy to rho less than or equal to 0.032 deg^-2 that have typical timescales 4.3 to 45.3 days. We compare and contrast our upper limit with the snapshot rates - derived from either detections or non-detections of transient and variable radio sources - reported in the literature. When compared with the current Log N - Log S distribution formed from previous surveys, we show that our upper limit is consistent with the observed population. Current and future radio transient surveys will hopefully further constrain these statistics, and potentially discover dominant transient source populations. In this paper we also briefly explore the current transient commissioning observations with LOFAR, and the impact they will make on the field.Comment: Accepted for publication in MNRA

    Facial Expression Manipulation for Personalized Facial Action Estimation

    Get PDF
    Limited sizes of annotated video databases of spontaneous facial expression, imbalanced action unit labels, and domain shift are three main obstacles in training models to detect facial actions and estimate their intensity. To address these problems, we propose an approach that incorporates facial expression generation for facial action unit intensity estimation. Our approach reconstructs the 3D shape of the face from each video frame, aligns the 3D mesh to a canonical view, and trains a GAN-based network to synthesize novel images with facial action units of interest. We leverage the synthetic images to achieve two goals: 1) generating AU-balanced databases, and 2) tackling domain shift with personalized networks. To generate a balanced database, we synthesize expressions with varying AU intensities and perform semantic resampling. Our experimental results on FERA17 show that networks trained on synthesized facial expressions outperform those trained on actual facial expressions and surpass current state-of-the-art approaches. To tackle domain shift, we propose personalizing pretrained networks. We generate synthetic expressions of each target subject with varying AU intensity labels and use the person-specific synthetic images to fine-tune pretrained networks. To evaluate performance of the personalized networks, we use DISFA and PAIN databases. Personalized networks, which require only a single image from each target subject to generate synthetic images, achieved significant improvement in generalizing to unseen domains

    Long duration radio transients lacking optical counterparts are possibly Galactic Neutron Stars

    Get PDF
    (abridged) Recently, a new class of radio transients in the 5-GHz band was detected by Bower et al. We present new deep near-Infrared (IR) observations of the field containing these transients, and find no counterparts down to a limiting magnitude of K=20.4 mag. We argue that the bright (>1 Jy) radio transients recently reported by Kida et al. are consistent with being additional examples of the Bower et al. transients. We refer to these groups of events as "long-duration radio transients". The main characteristics of this population are: time scales longer than 30 minute but shorter than several days; rate, ~10^3 deg^-2 yr^-1; progenitors sky surface density of >60 deg^-2 (95% C.L.) at Galactic latitude ~40 deg; 1.4-5 GHz spectral slopes, f_\nu ~ \nu^alpha, with alpha>0; and most notably the lack of any counterparts in quiescence in any wavelength. We rule out an association with many types of objects. Galactic brown-dwarfs or some sort of exotic explosions remain plausible options. We argue that an attractive progenitor candidate for these radio transients is the class of Galactic isolated old neutron stars (NS). We confront this hypothesis with Monte-Carlo simulations of the space distribution of old NSs, and find satisfactory agreement for the large areal density. Furthermore, the lack of quiescent counterparts is explained quite naturally. In this framework we find: the mean distance to events in the Bower et al. sample is of order kpc; the typical distance to the Kida et al. transients are constrained to be between 30 pc and 900 pc (95% C.L.); these events should repeat with a time scale of order several months; and sub-mJy level bursts should exhibit Galactic latitude dependence. We discuss possible mechanisms giving rise to the observed radio emission.Comment: Submitted to ApJ, 17 pages, 10 figure

    Radio and gamma-ray follow-up of the exceptionally high activity state of PKS 1510-089 in 2011

    Full text link
    We investigate the radio and gamma-ray variability of the flat spectrum radio quasar PKS 1510-089 in the time range between 2010 November and 2012 January. In this period the source showed an intense activity, with two major gamma-ray flares detected in 2011 July and October. During the latter episode both the gamma-ray and the radio flux density reached their historical peak. Multiwavelength analysis shows a rotation of about 380 deg of the optical polarization angle close in time with the rapid and strong gamma-ray flare in 2011 July. An enhancement of the optical emission and an increase of the fractional polarization both in the optical and in radio bands is observed about three weeks later, close in time with another gamma-ray outburst. On the other hand, after 2011 September a huge radio outburst has been detected, first in the millimeter regime followed with some time delay at centimeter down to decimeter wavelengths. This radio flare is characterized by a rising and a decaying stage, in agreement with the formation of a shock and its evolution, as a consequence of expansion and radiative cooling. If the gamma-ray flare observed in 2011 October is related to this radio outburst, then this strongly indicates that the region responsible for the gamma-ray variability is not within the broad line, but a few parsecs downstream along the jet.Comment: 14 pages, 12 figures, accepted for publication in MNRA

    Quadricuspid aortic valve not discovered by transthoracic echocardiography

    Get PDF
    BACKGROUND: Quadricuspid aortic valve is a rare congenital heart defect. Several different anatomical variations of a quadricuspid aortic valve has been described and aortic regurgitation is the predominant valvular dysfunction associated with quadricuspid aortic valve. CASE PRESENTATION: A 68-year-old woman presented with almost a years history of increasing dyspnoea on exertion. The patient have had two previous transthoracic echocardiographic exams in the last six years and they had only documented moderate aortic regurgitation. Transoesophageal echocardiography displayed a rare case of quadricuspid aortic valve with three cusps of equal size and one larger cusp. The malformation was associated with severe aortic regurgitation. CONCLUSION: Liberal use of transoesophageal echocardiography is often warranted if optimal display of valvular morphology is desired
    corecore