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Limited sizes of annotated video databases of spontaneous facial expression,
imbalanced action unit labels, and domain shift are three main obstacles in training
models to detect facial actions and estimate their intensity. To address these problems,
we propose an approach that incorporates facial expression generation for facial action
unit intensity estimation. Our approach reconstructs the 3D shape of the face from each
video frame, aligns the 3D mesh to a canonical view, and trains a GAN-based network to
synthesize novel images with facial action units of interest. We leverage the synthetic
images to achieve two goals: 1) generating AU-balanced databases, and 2) tackling
domain shift with personalized networks. To generate a balanced database, we
synthesize expressions with varying AU intensities and perform semantic resampling.
Our experimental results on FERA17 show that networks trained on synthesized facial
expressions outperform those trained on actual facial expressions and surpass current
state-of-the-art approaches. To tackle domain shift, we propose personalizing
pretrained networks. We generate synthetic expressions of each target subject with
varying AU intensity labels and use the person-specific synthetic images to fine-tune
pretrained networks. To evaluate performance of the personalized networks, we use
DISFA and PAIN databases. Personalized networks, which require only a single image
from each target subject to generate synthetic images, achieved significant improvement
in generalizing to unseen domains.

Keywords: facial expression recognition, facial action unit intensity estimation, facial action unit detection, facial
expression synthesis, generative adversarial network, 3D face registration, synthetic data augmentation, model
personalization

1 INTRODUCTION

Facial expression conveys emotional state, behavioral intention, and physical state (Tian et al., 2001).
In behavior sciences the gold-standard to decode facial expressions is the Facial Action Coding
System (FACS) (Ekman et al., 2002). FACS decomposes facial expressions into anatomically based
action units (AUs), which alone or in combinations can represent nearly all possible facial
expressions. While much progress has been made in action unit detection, at least three
significant problems impede further advances.

First, while abundant videos of spontaneous facial expression has been collected, only a fraction
have been manually annotated. There are relatively few expert FACS annotators and the time
required to comprehensively annotate action units slows the effort as well. AU annotation of a single
minute of video typically requires one to three hours for a highly trained expert (Cohn and Ekman,
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2005). Recently, Ben et al. (2021) released the initial work on AU
annotation for micro-expression recognition by a micro-and-
macro expression warehouse (MMEW), which is consonant with
the needs of future cross-modal affective computing. Reaching
human-like accuracy in a fully supervised way would require
labeled datasets orders of magnitude larger than those
available today.

Second, AU labels are highly skewed in spontaneous
behaviors. Many AUs occur rarely and only a sparse subset of
AU intensities occur at a time. As a consequence, rare classes do
not contribute equally during classifier training, which hinders
learning and undermines global performance. Although
imbalanced learning for AU estimation has been well explored
in the past, most approaches deal with a single majority and
minority class and are not directly applicable to the multi-label
AU domain.

And third, domain shift between source and target datasets
degrades the performance of trained models. For these reasons,
generalization abilities of trained AU occurrence and intensity
models to unseen imaging conditions and new subjects are a
critical research challenge. In research to date, some existing
approaches have proposed personalized models to solve these
problems (Wang and Wang, 2018; Yang et al., 2018; Lee et al.,
2019; Wang et al., 2019; Cai et al., 2021). In these approaches,
however, tasks are typically limited to basic facial expression
recognition or at most AU occurrence detection. Because facial
expression is a dynamic process, intensity estimation robust to
domain shift and individual differences is needed.

To address these problems, we propose a generative semi-
supervised method. Our approach tackles three obstacles within a
common framework: the limited size of annotated data now
available; the low frequencies of occurrence; and the domain
shift between the source and target datasets.

Our approach makes use of a 3D facial expression generator
trained on the labeled portion for two of the goals: 1) generating
AU-balanced databases, and 2) tackling domain shift with
personalized networks. The approach first reconstructs the 3D
shape of the face from each video frame, aligns the reconstructed
meshes to a canonical view to establish semantic correspondence
across frames and subjects, and then trains a GAN-based network
to synthesize novel images with facial action units of interest.

The intensity of facial actions may be one of the most
important features in assessing a person’s emotional state
(McKeown et al., 2015). Low intensity actions are detectable
through motion (Ambadar et al., 2005). Table 1 compares AU

intensity datasets. In order to be able to detect these fine scale
changes, we selected FERA 2017 (Valstar et al., 2017), DISFA
(Mavadati et al., 2013) and UNBC Pain(Lucey et al., 2011), which
are video datasets that have manual fine-grained AU intensity
annotations, to evaluate our approach. Note that Table 1 does not
include datasets without AU intensity annotation, such as Aff-
Wild2 (Kollias and Zafeiriou, 2019).

Our novelties are threefold:
3D geometry based AU manipulation. Unlike previous work

on facial AU manipulation that is limited to either 2D
representations (Pumarola et al., 2019) or individual frames
(Geng et al., 2019), our approach uses the 3D structure of the
face to create semantic correspondence across video-frames and
subjects.

Synthetic multi-label stratification of AUs.Many AUs occur
infrequently, which undermines learning. To mitigate
imbalanced learning, we increase the prevalence and variety of
under-represented AUs by synthesizing new facial expression.

Personalization using person-specific synthetic images. To
tackle domain shift, we personalize pre-trained models using
person-specific synthesis images generated from each target
subject. Our approach requires only a single image from each
subject to generate synthetic images.

This study is an extended version of our conference paper
(Niinuma et al., 2021a). In this study, we proposed a model
personalization approach using person-specific synthesis images
for AU intensity estimation, conducted experiments to show the
effectiveness of our model personalization approach, and
performed literature review for model personalization. We also
performed additional experiments for models trained on
combined datasets, and comparison of GAN architecture.

The rest of this paper is organized as follows: Section 2
introduces related work, Section 3 discusses the proposed
methods, Section 4 gives the experimental results and analysis,
and Section 5 provides conclusions.

2 RELATED WORK

Solutions to limited AU annotations: While a massive amount
of facial expression data is available, high quality annotations of
AU intensity labels are limited. To mitigate the problems in the
AU annotations, weakly-supervised, semi-supervised, and self-
supervised approaches have been proposed. Weakly-supervised
approaches aim to exploit incomplete, inaccurate or inexact

TABLE 1 | Comparison of AU intensity datasets.

FERAa DISFA EmotioNet UNBC Pain

# of AUs with intensity codes 7 12 12b 10
Continuous Video ✓ ✓ ✓
Manual Ground Truth ✓ ✓ Semi automatedc ✓
Social Context ✓
Manual Coding Good Good Unknown Good

aThe FERA, 2017 dataset consists of BP4D (Zhang et al., 2014) and BP4D+(Zhang et al., 2016).
bIn the EmotioNet Challenge 2020, 11 more AUs have been added for a total of 23 AUs. http://cbcsl.ece.ohio-state.edu/enc-2020/
cThey manually FACS-coded 10% of this database.
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annotations to provide supervision. Zhao et al. (2018) proposed a
weakly supervised clustering approach utilizing a large set of web
images with inaccurate annotations. The annotations were
obtained from either pretrained models or query strings. Ruiz
et al. (2015) proposed training AU detectors without any AU
annotations by leveraging the expression labels and using prior
knowledge on expression-dependent AU probabilities. Similarly,
Zhang et al. (2018b) exploited expression-dependent and
expression-independent joint AU probabilities as prior
knowledge and learned to detect AUs without any AU
annotation. In another study, Zhang et al. (2018a) used
various types of domain knowledge including relative
appearance similarity, temporal intensity ordering, facial
symmetry, and contrastive appearance difference, to provide
weak supervision for AU intensity estimation with extremely
limited annotations. Peng and Wang (2018) proposed a method
that learns AU classifiers from domain knowledge and
expression-annotated facial images through adversarial
training. Sun et al. (2021) proposed an AU detection
framework leveraging enormous and diverse facial images
labeled with six basic facial expressions without AU
annotations. Li and Shan (2021) also proposed an approach
utilizing expression-annotated images. Their approach
automatically selected highly related facial expression samples
by learning adaptative weights for the training facial expression
samples in a meta learning manner. Song et al. (2021) focused on
inferring temporal dynamics of facial actions when no explicit
temporal information is available from still images, and presented
a self-supervised approach to capture multiple scales of temporal
dynamics for AU intensity estimation. Yin et al. (2021) proposed
an AU detection architecture that can be jointly trained for self-
supervised optical flow estimation, patch localization, supervised
action unit detection, and adversarial domain adaptation.

Semi-supervised approaches deal with partially annotated
data. They aim to leverage the unlabeled data with the
assumption that unlabeled data follow continuity or form
cluster with the labeled data (Zhao et al., 2018). Wu et al.
(2015) used Restricted Boltzmann Machine to model the AU
distribution using the annotated labels, which is used to train the
AU classifiers with partially labeled data. Zeng et al. (2015)
trained a quasi-semi-supervised (QSS) classifier with virtual
labels provided by the confident positive and negative
classifiers, which separate easily identified positive and
negative samples from all else, respectively. Niu et al. (2019)
proposed a semi-supervised co-training approach named as
multi-label coregularization for AU recognition, which aims to
improve AU recognition with abundant unlabeled face images
and domain knowledge of AUs.

Recent work focuses on self-supervised approaches where the
goal is to learn the discriminative representation from the massive
amount of videos without annotations. Li et al. (2019) proposed a
self-supervised learning framework named Twin-Cycle
Autoencoder that disentangles the AU-related movements from
the pose-related ones to learn AU representations from unlabeled
videos.While the aforementioned approaches tackle the problems in
the annotations, none of them aims to balance the distribution of AU
intensities. For label balancing, upsampling approaches where the

infrequent labels are selected multiple times (Li et al., 2017; Zhang Z.
et al., 2018) or a multi-label minority oversampling majority
undersampling approach (Chu et al., 2019) have been used. Since
resampling is done within the dataset, such balancing methods do
not contribute additional semantic information about the
infrequent label.

GAN-based facial expression transfer: Recently GANs have
received attention to transfer facial expressions from a source
subject to a target subject. Existing work on GAN-based facial
expression transfer approaches focus on generating facial images
with discrete emotions (Choi et al., 2018; Ding et al., 2018), or the
specified facial action units (Pumarola et al., 2019; Liu et al.,
2020). Some of the GAN-based approaches specifically aim to
guide their models with the facial geometry information. Song
et al. (2018) proposed a Geometry-Guided Generative
Adversarial Network (G2-GAN) which employs fiducial points
as a controllable condition to guide facial texture synthesis with
specific expressions. Qiao et al. (2018) applied contrastive
learning in GAN to embed geometry information onto a
semantic manifold in the latent space for facial expression
transfer. Geng et al. (2019) combined 3DMMs and deep
generative techniques in a single framework for fine-grained
face manipulation. Yet, in these studies transfer was limited to
either 2D representation or to individual frames.

Synthetic data augmentation: Some of the recently proposed
methods utilized synthetic data for facial expression analysis.
Abbasnejad et al. (2017) pre-trained their model using synthetic
face images and then fine-tuned it on real images. Zhu et al.
(2018) proposed a data augmentation method using GAN to
classify basic emotions. Kollias et al. (2020) proposed an approach
using 3DMMs to synthesize facial affect: in terms of six basic
emotions or in terms of valence and arousal. Unlike the existing
methods, our approach is designed to generate a large AU-
balanced dataset.

Model personalization: While there were some shallow
based approaches (Rudovic et al., 2015; Chu et al., 2017),
most recent methods utilized deep-learning based models.
Lee et al. (2019) proposed an approach based on the notion
of model-agnostic meta-learning for AU occurrence detection.
Some other existing methods (Wang and Wang, 2018; Yang
et al., 2018; Wang et al., 2019; Cai et al., 2021) utilized a GAN
architecture to personalize models as with our proposed
approach. Yang et al. (2018) utilized a GAN to generate a
person-specific sub-space for each subject to perform six
basic facial expression recognition. Wang et al. (2019)
proposed an adversarial feature learning method addressing
both identity and pose biases for basic expression recognition.
Cai et al. (2021) proposed an approach synthesizing identity-
free expressive faces to classify six basic expression. Wang and
Wang (2018) proposed an architecture that trains a generator
and a AU classifier at the same time for AU occurrence
detection. Kim and Song (2021) presented a person
independent facial emotion recognition by adversarily
learning weak emotion samples based on strong emotion
samples. While they showed promising results, their tasks
were limited to basic facial expression recognition or AU
occurrence detection. Unlike the existing methods, the target
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of our approach is AU intensity estimation that requires fine-
grained facial expression synthesis.

3 PROPOSED METHOD

Figure 1 shows the pipeline of our approach. To generate the
synthesis images, we first perform dense 3D registration from 2D
images. Then, we train a GANimation-based architecture with

idiosyncratic loss to synthesize new facial expressions. We
synthesize images to achieve two objectives: 1) training generic
models with a completely balanced AU database, and 2)
personalizing models for each target subject. To obtain a balanced
distribution of AU intensity labels, we generate synthesis images from
facial images in the train dataset. The balanced dataset is used to train
genericmodels. To obtain personalizedmodels, we generate synthetic
facial expressions of each target subject with varying AU intensity
labels, and use the synthetic images to fine-tune the generic models.

FIGURE 1 | Pipeline of our approach. (A) A dense 3Dmesh of the face is reconstructed from each annotated video frame, rotated to the canonical frontal view, and
2D rasterized. Then, a GAN-based network is trained to synthesize a novel image with target AUs (yt). The same trained network is used to synthesize images of both
persons in the database and new persons. (B) Given a single registered input image (Iys) and target AUs (yt), the target AUs are transferred to the input image (~Iyt). (C)
Synthesis expressions are generated with varying AU intensity labels, and they are used to personalize pre-trained networks.
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3.1 3D Face Registration
We normalize videos using PRNet (Feng et al., 2018), a face
alignment software that accomplishes dense 3D registration from
2D images without requiring person-specific training. PRNet uses
an encoder-decoder architecture containing convolutional
layers and residual blocks to jointly perform facial
landmark alignment and 3D facial structure reconstruction.
This architecture learns a mapping from an RGB image to UV
position map (a 2D image representation of 3D coordinates in
UV space keeping the position and semantic information). By
learning the position map, it is possible to directly regress the
complete 3D structure along with semantic meaning from a
single image. Using PRNet, we obtain the dense 3D mesh of the
face in a frontal view and texture information. Then, we map
the texture to 3D mesh and rasterize it to 2D image of size
224 × 224.

3.2 Facial Expression Generation
Architecture
We build upon GANimation (Pumarola et al., 2019) framework
to synthesize novel facial expressions. First we map AU intensity
labels (0 to E-level) to values in range [0,1]. Given a 3D registered
source image Iys with the AU intensity values ys = {s1, s2, . . . , sn},
and target AU intensity values yt = {t1, t2, . . . , tn}, we synthesize
~Iyt. The integer n is the number of AUs.With our architecture, we
aim to minimize these following terms:

Image Adversarial Loss: In order to obtain realistic
synthesized images and ensure that the distribution of the
generated images are similar to the distribution of the training
images, we use image adversarial loss. Let Ps be the data
distribution of the source image, P~I the random interpolation
distribution, and λggp the penalty loss. Then we can write the
image adversarial loss Ladv(G,Dadv, Iys, yt) as follows:

EIys~Ps Dadv G Iys|yt( )( )[ ] − EIys~Ps Dadv Iys( )[ ]
+ λgpE~I~P

~I

‖∇~IDadv
~I( )‖2 − 1( )2[ ] (1)

where G denotes generator and Dadv denotes adversarial
discriminator.

Conditional Expression Loss: In order to enforce G to
synthesize images containing the target expression yt, we use
the following loss Lexp(G,Dexp, Iys, ys, yt) to minimize the
distance between AU intensities of the images and those
predicted with Dexp for both source and synthesized images:

EIys~Ps ‖Dexp G Iys|yt( )( ) − yt‖22[ ] + EIys~Ps ‖Dexp Iys( ) − ys‖22[ ]
(2)

where Dexp denotes discriminator for expression.
Identity Loss: We aim to guarantee that the face in both the

input and output images belong to the same person. We use this
cycle-consistency loss to penalize the difference between the
original image Iys and its reconstruction Iyt.

Lidt G, Iys, ys, yt( ) � EIys~Ps ‖G G Iys|yt( )|ys( ) − Iys‖1[ ] (3)

Idiosyncratic Loss: With the GANimation architecture, we
can transfer the AU intensity values yt of a target image Iyt to the
source image Iys to synthesize ~Iyt. When the identity of source (I)
and target (J) images are the same, we canminimize the difference
between Iyt and ~Iyt to ensure that both expression and identity of
the synthesized image are the same as the target image.
Idiosyncratic loss can be defined as:

Lids G, Iys, ys, yt( ) � EIys~Ps ‖ G Iys|yt( ) − Iyt‖1([ ] (4)
Final Loss: We obtain our final loss by combining of the

mentioned individual losses as follows:

L � λadvLadv + λexpLexp + λidtLidt + λidsLids (5)
where λadv, λexp, λidt, and λids are the hyperparameters used to
adjust the importance of different components.

3.3 Train AU Classifier Without
Personalization
We perform semantic resampling for the imbalanced training
dataset and create a training set having balanced AU intensity
labels for each AU. Then we train convolutional neural networks
(VGG16) using the balanced synthetic training set. We trained a
separate model for each AU. During the test time, we obtain AU
intensity outputs of each estimator.

3.4 Train AU Classifier With Personalization
We obtain a single image from each target subject, and generate
synthetic expressions for each AU intensity. Then, we use the
person-specific synthetic images to personalize the person-
independent models (VGG16). Because AU intensity is
categorized into 6 classes, we generate 6 synthesis images for
each AU, and use them to fine-tune generic models.

4 EXPERIMENTS

4.1 Datasets
In all of our experiments, we used four facial expression datasets.
For training the generator and evaluating within domain
performance, we used the widely accepted 2017 Facial
Expression Recognition Benchmark (FERA 2017) (Valstar
et al., 2017). For generating out-of-domain samples, we used
the high resolution images fromMultiPIE (Gross et al., 2010). To
evaluate the generalizability of our AU classifiers to another
domain, we used the Denver Intensity of Spontaneous Facial
Action Database (DISFA) (Mavadati et al., 2013) and the UNBC
Pain dataset (Lucey et al., 2011).

FERA 2017: The FERA 2017 Challenge was the first to
provide a common protocol with which to compare
approaches to detection of AU occurrence and AU intensity
robust to pose variation. FERA 2017 provided synthesized face
images with 9 head poses as shown in Figure 5. The training
set is based on the BP4D database (Zhang et al., 2014), which
includes digital videos of 41 participants. The development set
and test set are derived from BP4D+(Zhang et al., 2016) and
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include digital videos of 20 and 30 participants, respectively.
FERA 2017 presented two sub-challenges: occurrence
detection and intensity estimation. For the former 10 AUs
were labelled; for the latter, 7 AUs were labelled. For our
experiments, 7 AUs for intensity estimation were used.

MultiPIE: The MultiPIE dataset contains images of 337
people recorded in up to four sessions over the span of five
months. Subjects were imaged under 15 view points and 19
illumination conditions while displaying a range of facial
expressions. In addition, high resolution frontal images were
acquired as well. For synthesis, we used the high resolution
images only.

DISFA: The DISFA dataset contains videos of 27 adult
subjects (12 women, 15 men). It is manually annotated for
AU intensity from 0 to E-level. Participants watched a video

clip consisting of 9 segments intended to elicit a range of facial
expressions of emotion.

UNBC Pain: The UNBC Pain dataset consists of videos of 25
adults, who had shoulder pain. It is also manually annotated for
AU intensity from 0 to E-level. In the dataset, facial expressions
are mostly associated with pain, and the correlation among AUs
differs from that of FERA2017 and DISFA.

4.2 Experimental Setup
In this section we describe the experimental setup for the
generator network and the classifier.

4.2.1 Train Generator
In our experiments, we used the FERA 2017 dataset (Valstar et al.,
2017) to train facial expression generation models. The dataset
consists of Train, Valid, and Test partitions. We used the Train
partition only to train our model. All the images were resized to
224 × 224 pixels to match the receptive field of our AU estimation
model (VGG16).

In all of our experiments, we used a GANimation (Pumarola
et al., 2019) replicate implementation1. We modified the loss
function with the idiosyncratic constraint as described in the
previous section.

4.2.2 Train AU Classifier Without Personalization
For the baseline experiments, we used the training partition of
the FERA 2017 dataset (Valstar et al., 2017) to train AU
classifiers and used the test partition to test them. To create
a balanced training set and compare methods, 5,000 frames

FIGURE 2 | Examples of 2D and 3D normalization. Note the higher image quality when 3D normalization was used.

TABLE 2 | Comparison of synthetic vs. real expressions under 2D vs. 3D
alignment on FERA 2017 Test partition. Scores are Inter-rater reliability (ICC) of
AU intensity level estimation. The Images row shows which is used to train
classifiers: Real or Synthetic. All of the classifiers were tested on the real test
dataset. The same Registration (2D or 3D) were applied to both train and test
datasets.

Registration Images 2D Real 2D Synthetic 3D Real 3D Synthetic

AU1 0.431 0.336 0.343 0.381
AU4 0.223 0.116 0.260 0.219
AU6 0.796 0.790 0.751 0.804
AU10 0.777 0.812 0.785 0.773
AU12 0.801 0.792 0.806 0.795
AU14 0.118 0.238 0.084 0.244
AU17 0.395 0.374 0.391 0.461
Mean 0.506 0.494 0.489 0.525

The best results are shown in bold.

1https://github.com/donydchen/ganimation_replicate.
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FIGURE 3 | Influence of parameter values on ICC for intensity estimation.

FIGURE 4 | Comparison without and with idiosyncratic loss on (A) FERA and (B) MultiPIE.
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were selected for each AU intensity. In the case of real images,
we randomly selected 5,000 images from the six intensity
classes (not present, and A to E levels). We down-sampled
the majority classes and up-sampled the minority classes to
reach this number. In the case of synthesized images, we first
selected 5,000 pairs of input images and target AU labels for
each intensity and each AU. Then we synthesized 5,000 images
for these pairs. We selected 5,000 images according to
experimental results by Niinuma et al. (2021b). They
analyzed the influence of training set size on FERA17, and
showed that the training set size have a minor influence on the
performance: score peaked at 5,000 images, and after that
performance plateaued. During the selection input images
were selected only from frames that did not have the target
AU of interest. For example, when we synthesized images for E
level intensity of AU1, we randomly selected 5,000 input
images that did not have AU1 present and 5,000 target AU
labels having E level intensity for AU1. We employ this
strategy for two main reasons. First, while the generator can
add realistic facial deformations (like wrinkles and bulges) to
neutral faces, it oftentimes fails in removing those features.
Therefore, to acquire higher quality synthesized images,
starting from neutral frame is preferable. Second, since the
AU labels are sparse, there are many more frames in the dataset
where the target AU is not present. This way we can obtain a
variety of synthesized images for each facial expression.

We selected a VGG16 network pre-trained on ImageNet for
the baseline architecture for AU estimation. Previous studies
found this combination preferable for AU coding (Niinuma
et al., 2021b). We replaced the final layer of the network with
a 6-length one-hot representation, and fine-tuned VGG16
network from the third convolutional layer. The dropout rate
was set to 0.5, and an Adam optimizer was used with LR = 5 ×
10–5 as suggested in (Niinuma et al., 2021b). We fine-tuned the
pre-trained model for 10 epochs, chose the model showing the
best performance on the validation partition from the 10 models,
and then reported the results on the subject-independent test
partition.

4.2.3 Train AU Classifier With Personalization
In the experiments, the effect of our personalized AU classifier
was evaluated. We first selected a single image from a target
subject, generated person-specific synthesis images, and then

personalized generic models by fine-tuning them with the
synthesis images.

Any single image with any expression can be used to generate
the synthesis images because our facial expression generator does
not require AUs of the input image. In our experiments, we
selected an image with a neutral expression from each target
subject because a neutral frame is preferable to acquire higher
quality synthesis images as described in Section 4.2.2. Since
people often show a neutral or nearly neutral expression in
most scenarios, we believe that it is realistic to assume that we
can obtain a neutral frame. In our experiments, we trained a
separate model for each AU. Because AU intensity is categorized
into 6 ordinal classes (0 to 5), we generate 6 synthesis images for
each AU and use them to fine-tune generic models.

We personalized the person-independent models trained on
the AU balanced synthesis dataset described in Section 4.2.2. We
used three test datasets to personalize the models: FERA test
partition, DISFA, and UNBC Pain. The person-independent
models were trained on the FERA train partition, but the
subjects in the train partition do not overlap with the ones in
the test partition. The Adam optimizer was used as with the
classifier training in Section 4.2.2. However, the smaller learning
rate (LR = 5 × 10–6) and larger epochs (30 epochs) were used for
model personalization. Because we do not have a validation
partition for the model personalization, the final model after
30 epochs was chosen.

4.3 Synthetic vs. Real Expressions Under 2D
vs. 3D Alignment
In this set of experiments we studied how two main components
affect the performance of the whole system.

First, we were interested in the effect of face alignment on the
synthesis and AU recognition performance.We explored both 2D
and 3D alignment. 2D normalization treats the face as a 2D
object. That assumption is reasonable, as long as there is no head
movement present. As soon as head orientation deviates from
frontal, one expects the classifier’s ability to measure expressions
to degrade. On the other hand, 3D normalization should be able
to preserve semantic correspondences of the different facial
regions across poses, and result in higher performance. For 2D
alignment, we applied Procrustes analysis between 68 landmarks
provided by the dlib face tracker (King, 2009) on the frames and a
frontal template. For 3D normalization we used the method
described in Sec. 3.1. Note that there are not significant
differences between shallow and deep approaches in terms of
facial alignment (Jeni et al., 2016; Sagonas et al., 2016). In the 300-
W Challenge (Sagonas et al., 2016), the two top methods are a
cascade regressor and a CNN approach. The dlib face tracker is an
implementation of a decision tree based cascade regressor
(Kazemi and Sullivan, 2014).

Second, we were interested how synthetic expressions would
affect the classification performance. We compared multi-label
minority oversampling and majority undersampling with the
proposed, completely synthetic expression generation. Both
methods balance the skewed distributions of AUs, but while

TABLE 3 | ICC for intensity estimation without and with idiosyncratic loss on FERA
2017 Test partition.

Without idiosyncratic loss With idiosyncratic loss

AU1 0.381 0.350
AU4 0.219 0.302
AU6 0.804 0.802
AU10 0.773 0.780
AU12 0.795 0.793
AU14 0.244 0.181
AU17 0.461 0.452
Mean 0.525 0.523

The best results are shown in bold.
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the first one cannot produce more varied minority samples, the
latter one can. As mentioned in Sec. 4.2.2, we used 5,000 images
for each intensity each AU for both real and synthesized image
settings.

Figure 2 shows examples of synthetic expressions generated
using 2D and 3D alignment. 3D alignment results in less
ghosting and other texture artifacts and provides higher quality
images. Inter-rater reliability (ICC) results of AU classification under
these four different conditions are shown in Table 2. 3D registration
with synthetic re-sampling outperformed the other three conditions.

In these experiments we conducted a parameter search to find
the optimal values of the generator for classification. We varied
parameters that control the contribution of the adversarial loss
(λadv), conditional expression loss (λexp), and the identity loss
(λidt). In our baseline configuration, we used 1.0 for λadv, 160 for
λexp, and 10 for λidt. Figure 3 shows the impact of parameter
values on the intensity estimation for different AUs. λidt does not
affect the classification significantly. For both λexp and λadv, we
selected the global optimal values. Pumarola et al. introduced an

attention mask and a color transformation term in the lost
function to prevent the attention mask saturation (Pumarola
et al., 2019). In our experiments we did not observe this saturation
effect and removed these terms from the loss function.

4.4 The Effect of Idiosyncratic Loss
Although 3D alignment improves the performance, image
quality is still low in some cases especially when target
expression has a high AU intensity. To mitigate this
problem, we introduced a new idiosyncratic term in the loss
function. FERA 2017 datasets include many images with
different facial expressions for each subject. Idiosyncratic loss
utilizes this feature of the datasets. Figure 4 shows some of the
examples (λids = 1). The ICC result with the new function is
0.523. To calculate the ICC result, 3D synthetic train images
were used to train classifiers, and 3D real test images were used
to test the classifiers. Compared with the ICC without it (0.525),
it does not improve the ICC (See Table 3 for details), but we
confirmed that it improves the image quality.

TABLE 4 | Comparison with state-of-the-art methods on FERA 2017 Test partition. Reported scores are ICC on frontal views only. The results for No norm is the same with
the ones for 3D Synthetic in Table 2.

Valstar et al.
(2017)

Amirian et al.
(2017)

Batista et al.
(2017)

Zhou et al.
(2017)

Niinuma et al.
(2021b)

Ours

No norm AU0 norm Mean norm

AU1 0.025 0.270 0.311 0.286 0.433 0.381 0.539 0.613
AU4 0.003 0.074 0.098 0.130 0.281 0.219 0.361 0.409
AU6 0.616 0.644 0.721 0.625 0.786 0.804 0.764 0.779
AU10 0.662 0.733 0.741 0.739 0.768 0.773 0.787 0.757
AU12 0.709 0.745 0.754 0.822 0.812 0.795 0.792 0.794
AU14 0.066 0.030 0.127 0.075 0.153 0.244 0.114 0.170
AU17 0.015 0.271 0.252 0.342 0.382 0.461 0.288 0.465
Mean 0.299 0.395 0.429 0.431 0.516 0.525 0.521 0.570

The best results are shown in bold.

FIGURE 5 | ICC for FERA 2017 Test partition with non-frontal view. (A) real 2D normalized→ real 2D normalized. (B) synthetic 3D normalized→ real 3D normalized.
(C) 3D augmented synthetic → real 2D normalized. The blue rectangle indicates the performance for frontal view images.

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 8616419

Niinuma et al. Expression Manipulation for AU Estimation

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


To evaluate the image quality, we performed three quantitative
analyses: Frechet Inception Distance (FID), Structural Similarity
Index (SSIM), and User Preference. The Frechet Inception
Distance (FID) (Heusel et al., 2017) for the synthetic dataset
with idiosyncratic loss (4.88) is better than the one without

idiosyncratic loss (5.94). The Structural Similarity Index
(SSIM) (Wang et al., 2004) for the one with idiosyncratic loss
(0.835) is also better than the one without idiosyncratic loss
(0.824). Note that a lower FID is better, and a higher SSIM is
better. For User Preference, 20 human subjects were asked to pick
an image with higher quality for randomly selected 20 pairs of
images with and without idiosyncratic loss. The User Preference
for images with idiosyncratic loss (52.5%) is higher than those
without idiosyncratic loss (47.5%).

4.5 Temporal Normalization and
Comparison With State of the Art
Results from the previous experiment suggest that precise spatial
alignment improves the performance. As AUs are temporal, we
decided to test the best method under different temporal
normalization. We compared two methods that enhance the

TABLE 5 | Cross domain ICC performance. (Synthetic training set → Real test set).

MultiPIE → FERA FERA → DISFA MultiPIE → DISFA FERA → UNBC Pain MultiPIE → UNBC Pain

AU01 0.311 0.314 0.418 - -
AU04 0.202 0.400 0.541 0.130 0.149
AU06 0.786 0.573 0.524 0.496 0.434
AU10 0.726 - - 0.034 0.038
AU12 0.792 0.748 0.698 0.402 0.367
AU14 0.168 - - - -
AU17 0.365 0.373 0.290 - -
Mean 0.479 0.482 0.494 0.266 0.247

TABLE 6 | ICC comparison of models trained on single vs. combined datasets for FERA 2017 Test partition and DISFA. Training size is the number of images per intensity per
AU used to train models.

FERA 2017 Test partition

Train dataset FERA
real

FERA
synthetic

FERA real + FERA
synthetic

MultiPIE
synthetic

FERA real + MultiPIE
synthetic

FERA synthetic + MultiPIE
synthetic

Train size 5,000 5,000 10,000 4,605 9,605 9,605

AU01 0.343 0.381 0.446 0.311 0.315 0.457
AU04 0.260 0.219 0.324 0.202 0.342 0.288
AU06 0.751 0.804 0.794 0.786 0.784 0.801
AU10 0.785 0.773 0.772 0.726 0.760 0.763
AU12 0.806 0.795 0.800 0.792 0.807 0.801
AU14 0.084 0.244 0.171 0.168 0.116 0.235
AU17 0.391 0.461 0.433 0.365 0.408 0.436
Mean 0.489 0.525 0.534 0.479 0.505 0.540

DISFA

Train dataset FERA
real

FERA
synthetic

FERA real + FERA
synthetic

MultiPIE
synthetic

FERA real + MultiPIE
synthetic

FERA synthetic + MultiPIE
synthetic

Train size 5,000 5,000 10,000 4,605 9,605 9,605
AU01 0.394 0.314 0.365 0.418 0.470 0.346
AU04 0.634 0.400 0.571 0.541 0.544 0.402
AU06 0.404 0.573 0.507 0.524 0.496 0.576
AU12 0.750 0.748 0.723 0.698 0.749 0.762
AU17 0.293 0.373 0.296 0.290 0.377 0.390
Mean 0.495 0.482 0.493 0.494 0.527 0.495

The best results are shown in bold.

TABLE 7 | ICC comparison for GAN architectures.

GANimation StarGAN GANimation internal classifier

AU1 0.381 0.367 0.380
AU4 0.219 0.259 0.065
AU6 0.804 0.793 0.712
AU10 0.773 0.788 0.743
AU12 0.795 0.807 0.793
AU14 0.244 0.199 0.123
AU17 0.461 0.451 0.364
Mean 0.525 0.523 0.454

The best results are shown in bold.
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temporal aspect of the AUs: AU0 normalization and mean
texture normalization. AU0 normalization computes the
appearance differences between the actual frame and a neutral
frame. A neutral frame is not necessarily available in real life
conditions, but we can assume that we have multiple frames from
a single person. In personal mean texture normalization we
calculate the average appearance of a person and then
calculate the differences between each frame and the mean
texture. This step minimizes individual differences in the
appearance space. We trained and tested models using the
appearance differences.

The last three columns ofTable 4 show the results. Personal mean
texture normalization shows the best results. Although, on average,
there is no gain with AU0 normalization, individual AU level
differences are significant. While AU0 normalization shows better
results for AU1 and AU4, it shows worse results for AU14 and AU17.

Table 4 shows the comparison with other state-of-the-art
methods using only the frontal poses. We report Inter-rater
reliability (ICC) that is the standard metric of the FERA 2017
benchmark. Our method (with or without temporal
enhancement) outperforms all other methods. For a fair
comparison, we compared our approach with existing
methods’ results on the frontal view of the test partition.

4.6 Experiment With Non-frontal Poses
Encouraged by the results of the previous experiment, we decided
to evaluate the method’s ability to generalize to unseen poses.
FERA 2017 has nine different poses, and we report the
performance on all of these using the Test partition. We
investigated the following three scenarios:

1) real 2D normalized → real 2D normalized. For a baseline, we
used real images with 2D alignment for training, and
evaluated performance on 2D normalized real images from
the testing set.

2) synthetic 3D normalized→ real 3D normalizedWe trained on
synthetic 3D normalized images, and tested on 3D normalized
real images from the test set. We applied the 3D normalization
procedure described in Section 3.1 to each test image with a
non-frontal pose. Self-occluded facial parts were filled with
black color during the rasterization step.

3) 3D augmented synthetic → real 2D normalized We
synthesized 3D meshes and rotated them into the nine
standard orientations found in FERA 2017. We randomly
selected 500 images for each intensity, AUs, poses. The total
number of images for each intensity each AU is 4,500 while
5,000 images are selected for scenarios (a) and (b). We tested
the system on 2D aligned test images.

Figure 5 shows the results. While (a) and (b) show low ICCs
when face poses are largely different from frontal views, the
performance drop for (c) is much smaller. The results show
that our synthesized images with 3D registration are also
effective for non-frontal views by recreating non-frontal
view images from the synthesized images. Note that: 1) the
approaches in Figure 5 use frontal view images only to train
models while the methods in FERA17 challenges used images
with all 9 poses to train models and 2) the reason why the
performance on frontal view for (c) is worse than (a) and (b) is
that only 500 frontal view images for each intensity each AU
are used to train.

FIGURE 6 |Comparison of ICC between networks trained on the same-domain dataset (DISFA or UNBC Pain), networks trained on FERA without personalization,
and networks trained on FERA with personalization. Personalized networks outperform the others.
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4.7 Cross-Domain Experiments
We have learned from the previous experiments that our AU
classifiers can perform well when trained and tested within the
same domain. To evaluate the generalizability of our approach to
unseen domains (both in generating expressions and evaluating
classifiers), we conducted two sets of experiments.

For the first experiment, we were interested in how generating
out-of-domain samples would affect the performance on the
FERA 2017 Test partition. In this case we trained the
generator network on the FERA 2017 Train partition, but we
synthesized new expressions using high resolution frontal images
present in theMultiPIE dataset. We selected 921MultiPIE images
and generated 5 target expressions for each image, resulting in
4,605 images for each intensity and each AU. We trained the
classifier on these images and tested the performance on FERA
2017 Test partition.

In the second cross-domain experiment, we evaluated out-of-
domain classification. Here classifiers were trained either on
synthetic expressions generated from FERA 2017 or synthetic
expressions generated from MultiPIE, and they were tested on
DISFA and UNBC Pain. The DISFA and UNBC Pain datasets
differ in imaging condition and type of AU coding: context is not
social in DISFA while in FERA subjects are interacting with the
experimenter, and in DISFA, the base rates of most AUs is very
low and limited to what occurs in a film-watching paradigm
(Ertugrul et al., 2020). In the UNBC Pain dataset, facial
expressions are mostly associated with pain, and the
correlation among AUs differs from that of FERA and DISFA.
In addition, the image size of UNBC Pain (320 × 240 or 352 ×

240) is smaller than the other two datasets (FERA 2017: 1024 ×
1024, and DISFA: 1024 × 768). These differences may cause the
low ICC on UNBC Pain.

In all of these experiments, the FERA17 Train partition was
used to train facial expression generation models, and 3D
normalization was applied to each image. The whole dataset of
DISFA or UNBC Pain was used to test the models.

Table 5 shows the results. Performance of models trained on
synthesized MultiPIE expressions (0.479) is lower than the one
trained on synthesized FERA 2017 expression (0.525), but there is
only 1% difference with the one trained on real FERA17
expressions (0.489). The results for DISFA shows that the
result trained on synthesized MultiPIE expressions (0.494) is
slightly better than the one trained on synthesized FERA 2017
expressions (0.482) while the results for UNBC Pain shows that
the result trained on synthesized FERA 2017 (0.266) is slightly
better than the one trained on synthesized MultiPIE expressions
(0.247).

4.8 Experiments for Models Trained on
Combined Datasets
In this section, we report results for models trained on combined
datasets. Table 6 show the results for FERA Test partition and
DISFA. The first, second and forth columns show the results for
models trained on single datasets, and the third, fifth and sixth
columns show results for models trained on combined datasets.
As shown in the table, combined datasets show slightly better
results.

FIGURE 7 | Comparison of 2AFC for occurrence detection between with and without personalization on FERA 2017 Test partition. We evaluated 3 different
thresholds. “Threshold A” means that the AU is present when the intensity is A-level or higher.
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4.9 Comparison of GAN Architectures
To examine the influence of GAN architectures, we conducted
experiments for GANimation, StarGAN and GANimation
internal classifier Dexp. Table 7 indicates that GANimation
and StarGAN show almost the same performance, but the
GANimation internal classifier performs worse than the others.

4.10 The Effect of Personalized Networks
We performed two sets of experiments to evaluate the effect of
our personalized networks.

In the first set of experiments, we evaluated ICC on the
FERA 2017, DISFA, and UNBC Pain datasets. Figure 6 shows
results for three types of networks: 1) networks trained on the
same domain (DISFA or UNBC Pain), 2) networks trained on
FERA without personalization, and 3) networks trained on
FERA with personalization. To evaluate the networks trained
on the same-domain dataset (DISFA or UNBC Pain), we
performed three-fold cross-validation. To create the train

datasets for each validation, we randomly selected 5,000
images from the six intensity classes, and generated AU
balanced train datasets as described in Section 4.2.2.
Figure 6 does not include results of networks trained on
the same-domain dataset for FERA because the other
networks were also trained on FERA. Networks trained on
FERA without personalization are the same AU classifiers
reported in Section 4.5, and networks trained on FERA
with personalization were trained by fine-tuning the person-
independent networks according to the steps described in
Section 4.2.3.

Figure 6 shows that the personalized networks outperform not
only the networks trained on FERA without personalization but
also the networks trained on the same-domain datasets with the
test datasets. The differences between with and without
personalization is especially large on the cross-domain
situation (DISFA and UNBC Pain): 13% on DISFA, and 10.3%
on UNBC Pain. The results indicate that our personalized

FIGURE 8 | t-SNE visualization. (A) Separation of our model trained without personalization for AU 6 in terms of AU intensity and identity. (B) Intensity separation for
AU 1, 6, 10 and 12 between models without and with personalization for the same subject.
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networks can greatly reduce the domain-shift problem even
though only a single image is required from each target
subject to synthesize person-specific images. Figure 6 also
shows that the effect of personalized networks varies
depending on the AU. We can see that the personalized
networks are especially effective for AU 1 and AU 4.

In the second set of experiments, we examined sensitivities
of the models by evaluating occurrence detection for different
thresholds. Figure 7 shows AU occurrence detection
performance of models trained with and without
personalization on FERA 2017 Test partition. Three
different thresholds are evaluated. In the figure, “Threshold
A” means that the AU is present when the intensity is A-level
or higher. In this experiments, we used 2AFC because the
metric is robust to imbalanced data while F1 is not (Jeni et al.,
2013). The 2AFC is a good approximation of the area under the
receiver operator characteristic curve (AUC) (Valstar et al.,
2017). Figure 7 demonstrates that the performance of the
models trained with personalization outperforms the one
without personalization.

4.11 t-SNE Visualization
To visualize the separability of the proposed method, we
performed t-SNE visualization. In this experiment, we
extracted the features of the second to last layer (4,096
dimensions) from each image in FERA 2017 Test partition,
and perform t-SNE on them. Figure 8A shows the separation
of our model trained without personalization for AU 6 in terms of
AU intensity and identity. The figure shows that the separation
between intensities is clear while the one between identities is not,
which implies that our model is correctly trained to estimate AU
intensities. Figure 8B compare the AU intensity separation
between models without and with personalization for the same
subject. The figure shows that the output of the models with
personalization is more structured and more separable than the
one without personalization.

5 CONCLUSION

We have proposed a generative approach that achieves 3D
geometry based AU manipulation to synthesize facial
expressions. Generating expressions using the 3D registered
facial images gives better AU intensity estimation performance
compared to using 2D registered ones. Moreover, our proposed
idiosyncratic loss has improved the visual quality of the outputs.
The synthesized images are used for two goals: semantic
resampling and network personalization.

With the semantic resampling, our approach provides a
balanced distribution of AU intensity labels, which is crucial to
train AU intensity estimators. We have shown that using the
balanced synthetic set for training performs better than using
the real training dataset on the same test set. Cross-pose and
cross-domain results reveal that classifiers trained on our

synthesized images are also effective on non-frontal views
and on unseen domains. Network personalization is
performed to tackle domain shift. We generate synthetic
expressions from a single image of each target subject, and
use the synthesized images to personalize the networks. Our
personalized networks outperform not only the person-
independent networks but also networks trained on the
same-domain datasets with the target datasets.

Future improvements will include tackling training facial
images with a non-frontal view. In our current approach, face
images in Train datasets need to be near frontal for accurate 3D
normalization. We also plan to expand the data augmentation
capacity of the proposed method to handle other challenges, such
as occlusion and illumination.
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