1,802 research outputs found
Geometries of third-row transition-metal complexes from density-functional theory
A set of 41 metal-ligand bond distances in 25 third-row transition-metal complexes, for which precise structural data are known in the gas phase, is used to assess optimized and zero-point averaged geometries obtained from DFT computations with various exchange-correlation functionals and basis sets. For a given functional (except LSDA) Stuttgart-type quasi-relativistic effective core potentials and an all-electron scalar relativistic approach (ZORA) tend to produce very similar geometries. In contrast to the lighter congeners, LSDA affords reasonably accurate geometries of 5d-metal complexes, as it is among the functionals with the lowest mean and standard deviations from experiment. For this set the ranking of some other popular density functionals, ordered according to decreasing standard deviation, is BLYP > VSXC > BP86 approximate to BPW91 approximate to TPSS approximate to B3LYP approximate to PBE > TPSSh > B3PW91 approximate to B3P86 approximate to PBE hybrid. In this case hybrid functionals are superior to their nonhybrid variants. In addition, we have reinvestigated the previous test sets for 3d- (Buhl M.; Kabrede, H. J. Chem. Theory Comput. 2006, 2, 1282-1290) and 4d- (Waller, M. P.; Buhl, M. J. Comput. Chem. 2007,28,1531-1537) transition-metal complexes using all-electron scalar relativistic DFT calculations in addition to the published nonrelativistic and ECP results. For this combined test set comprising first-, second-, and third-row metal complexes, B3P86 and PBE hybrid are indicated to perform best. A remarkably consistent standard deviation of around 2 pm in metal-ligand bond distances is achieved over the entire set of d-block elements.PostprintPeer reviewe
Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins
Bioinorganic canon states that active-site
thiolate coordination promotes rapid electron transfer (ET)
to and from type 1 copper proteins. In recent work, we have
found that copper ET sites in proteins also can be constructed
without thiolate ligation (called “type zero” sites). Here we
report multifrequency electron paramagnetic resonance
(EPR), magnetic circular dichroism (MCD), and nuclear
magnetic resonance (NMR) spectroscopic data together with
density functional theory (DFT) and spectroscopy-oriented
configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type
zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers
relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1
centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the
orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding
Detailed ab initio first-Principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes
A theoretical, computational, and conceptual framework for the interpretation and prediction of the magnetic anisotropy of transition metal complexes with orbitally degenerate or orbitally nearly degenerate ground states is explored. The treatment is based on complete active space self-consistent field (CASSCF) wave functions in conjunction with N-electron valence perturbation theory (NEVPT2) and quasidegenerate perturbation theory (QDPT) for treatment of magnetic field- and spin-dependent relativistic effects. The methodology is applied to a series of Fe(II) complexes in ligand fields of almost trigonal pyramidal symmetry as provided by several variants of the tris-pyrrolylmethyl amine ligand (tpa). These systems have recently attracted much attention as mononuclear single-molecule magnet (SMM) complexes. This study aims to establish how the ligand field can be fine tuned in order to maximize the magnetic anisotropy barrier. In trigonal ligand fields high-spin Fe(II) complexes adopt an orbitally degenerate ⁵E ground state with strong in-state spin–orbit coupling (SOC). We study the competing effects of SOC and the ⁵E⊗ε multimode Jahn–Teller effect as a function of the peripheral substituents on the tpa ligand. These subtle distortions were found to have a significant effect on the magnetic anisotropy. Using a rigorous treatment of all spin multiplets arising from the triplet and quintet states in the d⁶ configuration the parameters of the effective spin-Hamiltonian (SH) approach were predicted from first principles. Being based on a nonperturbative approach we investigate under which conditions the SH approach is valid and what terms need to be retained. It is demonstrated that already tiny geometric distortions observed in the crystal structures of four structurally and magnetically well-documented systems, reported recently, i.e., [Fe(tpa®)]⁻ (R = tert-butyl, Tbu (1), mesityl, Mes (2), phenyl, Ph (3), and 2,6-difluorophenyl, Dfp (4), are enough to lead to five lowest and thermally accessible spin sublevels described sufficiently well by S = 2 SH provided that it is extended with one fourth order anisotropy term. Using this most elementary parametrization that is consistent with the actual physics, the reported magnetization data for the target systems were reinterpreted and found to be in good agreement with the ab initio results. The multiplet energies from the ab initio calculations have been fitted with remarkable consistency using a ligand field (angular overlap) model (ab initio ligand field, AILFT). This allows for determination of bonding parameters and quantitatively demonstrates the correlation between increasingly negative D values and changes in the σ-bond strength induced by the peripheral ligands. In fact, the sigma-bonding capacity (and hence the Lewis basicity) of the ligand decreases along the series 1 > 2 > 3 > 4
Laboratory Characterization and Astrophysical Detection of Vibrationally Excited States of Vinyl Cyanide in Orion-KL
New laboratory data of CHCHCN (vinyl cyanide) in its ground and
vibrationally excited states at the microwave to THz domain allow searching for
these excited state transitions in the Orion-KL line survey.
Frequency-modulated spectrometers combined into a single broadband 50-1900 GHz
spectrum provided measurements of CHCHCN covering a spectral range of
18-1893 GHz, whose assignments was confirmed by Stark modulation spectra in the
18-40 GHz region and by ab-initio anharmonic force field calculations. For
analyzing the emission lines of CHCHCN species detected in Orion-KL we used
the excitation and radiative transfer code (MADEX) at LTE conditions. The
rotational transitions of the ground state of this molecule emerge from four
cloud components of hot core nature which trace the physical and chemical
conditions of high mass star forming regions in the Orion-KL Nebula. The total
column density of CHCHCN in the ground state is (3.00.9)x10
cm. We report on the first interstellar detection of transitions in the
v10=1/(v11=1,v15=1) dyad in space, and in the v11=2 and v11=3 states in
Orion-KL. The lowest energy vibrationally excited states of vinyl cyanide such
as v11=1 (at 328.5 K), v15=1 (at 478.6 K), v11=2 (at 657.8 K), the
v10=1/(v11=1,v15=1) dyad (at 806.4/809.9 K), and v11=3 (at 987.9 K) are
populated under warm and dense conditions, so they probe the hottest parts of
the Orion-KL source. Column density and rotational and vibrational temperatures
for CHCHCN in their ground and excited states, as well as for the
isotopologues, have been constrained by means of a sample of more than 1000
lines in this survey. Moreover, we present the detection of methyl isocyanide
(CHNC) for the first time in Orion-KL and a tentative detection of vinyl
isocyanide (CHCHNC) and give column density ratios between the cyanide and
isocyanide isomers.Comment: 46 pages, 22 figures, 14 tables, 9 online table
The furan microsolvation blind challenge for quantum chemical methods: First steps
© 2018 Author(s). Herein we present the results of a blind challenge to quantum chemical methods in the calculation of dimerization preferences in the low temperature gas phase. The target of study was the first step of the microsolvation of furan, 2-methylfuran and 2,5-dimethylfuran with methanol. The dimers were investigated through IR spectroscopy of a supersonic jet expansion. From the measured bands, it was possible to identify a persistent hydrogen bonding OH-O motif in the predominant species. From the presence of another band, which can be attributed to an OH-π interaction, we were able to assert that the energy gap between the two types of dimers should be less than or close to 1 kJ/mol across the series. These values served as a first evaluation ruler for the 12 entries featured in the challenge. A tentative stricter evaluation of the challenge results is also carried out, combining theoretical and experimental results in order to define a smaller error bar. The process was carried out in a double-blind fashion, with both theory and experimental groups unaware of the results on the other side, with the exception of the 2,5-dimethylfuran system which was featured in an earlier publication
NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results
The NEOWISE dataset offers the opportunity to study the variations in albedo
for asteroid classification schemes based on visible and near-infrared
observations for a large sample of minor planets. We have determined the
albedos for nearly 1900 asteroids classified by the Tholen, Bus and Bus-DeMeo
taxonomic classification schemes. We find that the S-complex spans a broad
range of bright albedos, partially overlapping the low albedo C-complex at
small sizes. As expected, the X-complex covers a wide range of albedos. The
multi-wavelength infrared coverage provided by NEOWISE allows determination of
the reflectivity at 3.4 and 4.6 m relative to the visible albedo. The
direct computation of the reflectivity at 3.4 and 4.6 m enables a new
means of comparing the various taxonomic classes. Although C, B, D and T
asteroids all have similarly low visible albedos, the D and T types can be
distinguished from the C and B types by examining their relative reflectance at
3.4 and 4.6 m. All of the albedo distributions are strongly affected by
selection biases against small, low albedo objects, as all objects selected for
taxonomic classification were chosen according to their visible light
brightness. Due to these strong selection biases, we are unable to determine
whether or not there are correlations between size, albedo and space
weathering. We argue that the current set of classified asteroids makes any
such correlations difficult to verify. A sample of taxonomically classified
asteroids drawn without significant albedo bias is needed in order to perform
such an analysis.Comment: Accepted to Ap
A revised asteroid polarization-albedo relationship using WISE/NEOWISE data
We present a reanalysis of the relationship between asteroid albedo and
polarization properties using the albedos derived from the Wide-field Infrared
Survey Explorer. We find that the function that best describes this relation is
a three-dimensional linear fit in the space of log(albedo)-log(polarization
slope)-log(minimum polarization). When projected to two dimensions the
parameters of the fit are consistent with those found in previous work. We also
define p* as the quantity of maximal polarization variation when compared with
albedo and present the best fitting albedo-p* relation. Some asteroid taxonomic
types stand out in this three-dimensional space, notably the E, B, and M Tholen
types, while others cluster in clumps coincident with the S- and C-complex
bodies. We note that both low albedo and small (D<30 km) asteroids are
under-represented in the polarimetric sample, and we encourage future
polarimetric surveys to focus on these bodies.Comment: 16 pages, Accepted to Ap
On the feasibility of N2 fixation via a single-site FeI/FeIV cycle: Spectroscopic studies of FeI(N2)FeI, FeIV=N, and related species
The electronic properties of an unusually redox-rich iron system, [PhBPR 3]FeNx (where [PhBPR 3] is [PhB(CH2PR2)3]−), are explored by Mössbauer, EPR, magnetization, and density-functional methods to gain a detailed picture regarding their oxidation states and electronic structures. The complexes of primary interest in this article are the two terminal iron(IV) nitride species, [PhBPiPr 3]FeN (3a) and [PhBPCH2Cy 3]FeN (3b), and the formally diiron(I) bridged-Fe(μ-N2)Fe species, {[PhBPiPr 3]Fe}2(μ-N2) (4). Complex 4 is chemically related to 3a via a spontaneous nitride coupling reaction. The diamagnetic iron(IV) nitrides 3a and 3b exhibit unique electronic environments that are reflected in their unusual Mössbauer parameters, including quadrupole-splitting values of 6.01(1) mm/s and isomer shift values of −0.34(1) mm/s. The data for 4 suggest that this complex can be described by a weak ferromagnetic interaction (J/D < 1) between two iron(I) centers. For comparison, four other relevant complexes also are characterized: a diamagnetic iron(IV) trihydride [PhBPiPr 3]Fe(H)3(PMe3) (5), an S = 3/2 iron(I) phosphine adduct [PhBPiPr 3]FePMe3 (6), and the S = 2 iron(II) precursors to 3a, [PhBPiPr 3]FeCl and [PhBPiPr 3]Fe-2,3:5,6-dibenzo-7-aza bicyclo[2.2.1]hepta-2,5-diene (dbabh). The electronic properties of these respective complexes also have been explored by density-functional methods to help corroborate our spectral assignments and to probe their electronic structures further
Improved catalytic activity of ruthenium–arene complexes in the reduction of NAD+
A series of neutral Ru-II half-sandwich complexes of the type [(eta(6)-arene)Ru(N,N')Cl] where the arene is para-cymene (p-cym), hexamethylbenzene (hmb), biphenyl (bip), or benzene (bn) and N,N' is N-(2-aminoethyl) -4-(trifluoromethyl)benzenesulfonamide (TfEn), N-(2-aminoethyl)-4-toluenesulfonamide (TsEn), or N-(2-aminoethyl)-methylenesulfonamide (MsEn) were synthesized and characterized. X-ray crystal structures of [(p-cym)Ru(MsEn)Cl] (1), [(hmb)Ru(TsEn)Cl] (5), [(hmb)Ru(TfEn)Cl] (6), [(bip)Ru(MsEn)Cl] (7), and [(bip)Ru(TsEn)Cl] (8) have been determined. The complexes can regioselectively catalyze the transfer hydrogenation of NAD(+) to give 1,4-NADH in the presence of formate. The turnover frequencies (TOF) when the arene is varied decrease in the order bn > bip > p-cym > hmb for complexes with the same N,N' chelating ligand. The TOF decreased with variation in the N,N' chelating ligand in the order TfEn > TsEn > MsEn for a given arene. [(bn)Ru(TfEn)Cl] (12) was the most active, with a TOP of 10.4 h(-1). The effects of NAD(+) and formate concentration on the reaction rates were determined for [(p-cym)Ru(TsEn)Cl] (2). Isotope studies implicated the formation of [(arene)Ru(N,N')(H)] as the rate-limiting step. The coordination of formate and subsequent CO2 elimination to generate the hydride were modeled computationally by density functional theory (DFT). CO2 elimination occurs via a two-step process with the coordinated formate first twisting to present its hydrogen toward the metal center. The computed barriers for CO2 release for arene = benzene follow the order MsEn > TsEn > TfEn, and for the Ms En system the barrier followed bn < hmb, both consistent with the observed rates. The effect of methanol on transfer hydrogenation rates in aqueous solution was investigated. A study of pH dependence of the reaction in D2O gave the optimum pH* as 7.2 with a TOF of 1.58 h(-1) for 2. The series of compounds reported here show an improvement in the catalytic activity by an order of magnitude compared to the ethylenediamine analogues
Search for LBV Candidates in the M33 Galaxy
A total of 185 luminous blue variable (LBV) candidates with V < 18.5 and B-V
< 0.35 are selected based on the photometrical Survey of Local Group Galaxies
made by P. Massey et al. 2006. The candidates were selected using aperture
photometry of H-alpha images. The primary selection criterion is that the
prospective candidate should be a blue star with H-aplha emission. In order not
to miss appreciably reddened LBV candidates, we compose an additional list of
25 presumably reddened (0.35 < B-V < 1.2, V < 18.5) emission star candidates. A
comparison with the list of known variables in the M33 galaxy showed 29% of our
selected candidates to be photometrically variable. We also find our list to
agree well with the lists of emission-line objects obtained in earlier papers
using different methods.Comment: 6 figure
- …
