261 research outputs found

    Bones of Puffinus Lherminieri Lesson (Aves: Procellaridae) and Two Other Vertebrates from Cueva del Agua, Mona Isalnd, Puerto Rico (West Indies)

    Get PDF
    From a dive in Cueva del Agua, Mona Island, Puerto Rico, twelve un-mineralized bones of Puffinus Lherminieri Lesson, one of Cyclura stejnegeri Stejneger, and one of Moormops blainvilii Leach were collected. The subfossil evidence confirms that P. Lherminieri was a common species on Mona Island. Cyclura stejnegeri and M. blainvilii probably became trapped and died in the pool chamber

    Magnetostratigraphy of Cueva Del Aleman, Isla de Mona, Puerto Rico and the Species Duration of Audobon\u27s Shearwater

    Get PDF
    Magnetostratigraphic analysis of deposits exposed in Cueva del Aleman shows two reversed and two normal chronozones. The lower normal polarity event is observed in a clastic dike and probably predates initial cave formation. Sediments deposited inside the cave proper show a R-N-R sequence and probably date to at least 1.8 Ma. A fossiliferous clastic dike contains normal polarity with an overlying reversed magnetozone. Audubon’s Shearwater (bird) bones occur in the dike, which is tentatively correlated with the lower N polarity zone predating cave formation. If this correlation is correct, the Audubon’s Shearwater (Puffinus lherminieri) range can be extended back to at least 1.8 Ma, the Olduvai subchron

    Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis

    No full text
    Angiogenesis is an essential physiological process and an important factor in disease pathogenesis. However, its exploitation as a clinical target has achieved limited success and novel molecular targets are required. Although heme oxygenase-1 (HO-1) acts downstream of vascular endothelial growth factor (VEGF) to modulate angiogenesis, knowledge of the mechanisms involved remains limited. We set out identify novel HO-1 targets involved in angiogenesis. HO-1 depletion attenuated VEGF-induced human endothelial cell (EC) proliferation and tube formation. The latter response suggested a role for HO-1 in EC migration, and indeed HO-1 siRNA negatively affected directional migration of EC towards VEGF; a phenotype reversed by HO-1 over-expression. EC from Hmox1(-/-) mice behaved similarly. Microarray analysis of HO-1-depleted and control EC exposed to VEGF identified cyclins A1 and E1 as HO-1 targets. Migrating HO-1-deficient EC showed increased p27, reduced cyclin A1 and attenuated cyclin-dependent kinase 2 activity. In vivo, cyclin A1 siRNA inhibited VEGF-driven angiogenesis, a response reversed by Ad-HO-1. Proteomics identified structural protein vimentin as an additional VEGF-HO-1 target. HO-1 depletion inhibited VEGF-induced calpain activity and vimentin cleavage, while vimentin silencing attenuated HO-1-driven proliferation. Thus, vimentin and cyclins A1 and E1 represent VEGF-activated HO-1-dependent targets important for VEGF-driven angiogenesis

    Geology of Rum Cay, Bahamas: A Field Trip Guide

    Get PDF
    See other Smith authored Field Trip Guides of Gerace Research Centre

    Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling

    Get PDF
    Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα(Thr172) and CREB-1(Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65(Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1β-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs

    Performance of the LHCb vertex locator

    Get PDF
    The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 μm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 μm for translations in the plane transverse to the beam. A primary vertex resolution of 13 μm in the transverse plane and 71 μm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c

    Precision luminosity measurements at LHCb

    Get PDF
    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy √s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for √s = 2.76, 7 and 8 TeV (proton-proton collisions) and for √sNN = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at √s = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider

    Opposite-side flavour tagging of B mesons at the LHCb experiment

    Get PDF
    The calibration and performance of the oppositeside flavour tagging algorithms used for the measurements of time-dependent asymmetries at the LHCb experiment are described. The algorithms have been developed using simulated events and optimized and calibrated with B + →J/ψK +, B0 →J/ψK ∗0 and B0 →D ∗− μ + νμ decay modes with 0.37 fb−1 of data collected in pp collisions at √ s = 7 TeV during the 2011 physics run. The oppositeside tagging power is determined in the B + → J/ψK + channel to be (2.10 ± 0.08 ± 0.24) %, where the first uncertainty is statistical and the second is systematic

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma)

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 -> phi gamma has been measured using 0.37 fb-1 of pp collisions at a centre of mass energy of sqrt(s) = 7 TeV, collected by the LHCb experiment. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.12 +/- 0.08 ^{+0.06}_{-0.04} ^{+0.09}_{-0.08}, where the first uncertainty is statistical, the second systematic and the third is associated to the ratio of fragmentation fractions fs/fd. Using the world average for BR(B0 -> K*0 gamma) = (4.33 +/- 0.15) x 10^{-5}, the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.9 +/- 0.5) x 10^{-5}, which is the most precise measurement to date.Comment: 15 pages, 1 figure, 2 table

    Measurement of the CP-violating phase phi_s in the decay Bs->J/psi phi

    Get PDF
    We present a measurement of the time-dependent CP-violating asymmetry in B_s -> J/psi phi decays, using data collected with the LHCb detector at the LHC. The decay time distribution of B_s -> J/psi phi is characterized by the decay widths Gamma_H and Gamma_L of the heavy and light mass eigenstates of the B_s-B_s-bar system and by a CP-violating phase phi_s. In a sample of about 8500 B_s -> J/psi phi events isolated from 0.37 fb^-1 of pp collisions at sqrt(s)=7 TeV we measure phi_s = 0.15 +/- 0.18 (stat) +/- 0.06 (syst) rad. We also find an average B_s decay width Gamma_s == (Gamma_L + Gamma_H)/2 = 0.657 +/- 0.009 (stat) +/- 0.008 (syst) ps^-1 and a decay width difference Delta Gamma_s == Gamma_L - Gamma_H} = 0.123 +/- 0.029 (stat) +/- 0.011 (syst) ps^-1. Our measurement is insensitive to the transformation (phi_s,DeltaGamma_s --> pi - phi_s, - Delta Gamma_s.Comment: 9 pages, 3 figure
    corecore