63 research outputs found

    High-resolution hydraulic parameter maps for surface soils in tropical South America

    Get PDF
    Modern land surface model simulations capture soil profile water movement through the use of soil hydraulics sub-models, but good hydraulic parameterisations are often lacking, especially in the tropics. We present much-improved gridded data sets of hydraulic parameters for surface soil for the critical area of tropical South America, describing soil profile water movement across the region to 30 cm depth. Optimal hydraulic parameter values are given for the Brooks and Corey, Campbell, van Genuchten–Mualem and van Genuchten–Burdine soil hydraulic models, which are widely used hydraulic sub-models in land surface models. This has been possible through interpolating soil measurements from several sources through the <i>SOTERLAC</i> soil and terrain data base and using the most recent pedotransfer functions (PTFs) derived for South American soils. All soil parameter data layers are provided at 15 arcsec resolution and available for download, this being 20x higher resolution than the best comparable parameter maps available to date. Specific examples are given of the use of PTFs and the importance highlighted of using PTFs that have been locally parameterised and that are not just based on soil texture. We discuss current developments in soil hydraulic modelling and how high-resolution parameter maps such as these can improve the simulation of vegetation development and productivity in land surface models

    The modern pollen-vegetation relationship of a tropical forest-savannah mosaic landscape, Ghana, West Africa

    Get PDF
    Transitions between forest and savannah vegetation types in fossil pollen records are often poorly understood due to over-production by taxa such as Poaceae and a lack of modern pollen-vegetation studies. Here, modern pollen assemblages from within a forest-savannah transition in West Africa are presented and compared, their characteristic taxa discussed, and implications for the fossil record considered. Fifteen artificial pollen traps were deployed for 1 year, to collect pollen rain from three vegetation plots within the forest-savannah transition in Ghana. High percentages of Poaceae and Melastomataceae/Combretaceae were recorded in all three plots. Erythrophleum suaveolens characterised the forest plot, Manilkara obovata the transition plot and Terminalia the savannah plot. The results indicate that Poaceae pollen influx rates provide the best representation of the forest-savannah gradient, and that a Poaceae abundance of >40% should be considered as indicative of savannah-type vegetation in the fossil record

    Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests.

    Get PDF
    Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here, we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n = 6) and logged (n = 5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha-1  year-1 respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, nonpioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests

    Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations

    Get PDF
    Wetlands are the largest natural source of methane. The ability to model the emissions of methane from natural wetlands accurately is critical to our understanding of the global methane budget and how it may change under future climate scenarios. The simulation of wetland methane emissions involves a complicated system of meteorological drivers coupled to hydrological and biogeochemical processes. The Joint UK Land Environment Simulator (JULES) is a process-based land surface model that underpins the UK Earth System Model (UKESM) and is capable of generating estimates of wetland methane emissions. In this study, we use GOSAT satellite observations of atmospheric methane along with the TOMCAT global 3-D chemistry transport model to evaluate the performance of JULES in reproducing the seasonal cycle of methane over a wide range of tropical wetlands. By using an ensemble of JULES simulations with differing input data and process configurations, we investigate the relative importance of the meteorological driving data, the vegetation, the temperature dependency of wetland methane production and the wetland extent. We find that JULES typically performs well in replicating the observed methane seasonal cycle. We calculate correlation coefficients to the observed seasonal cycle of between 0.58 and 0.88 for most regions; however, the seasonal cycle amplitude is typically underestimated (by between 1.8 and 19.5 ppb). This level of performance is comparable to that typically provided by state-of-the-art data-driven wetland CH4 emission inventories. The meteorological driving data are found to be the most significant factor in determining the ensemble performance, with temperature dependency and vegetation having moderate effects. We find that neither wetland extent configuration outperforms the other, but this does lead to poor performance in some regions. We focus in detail on three African wetland regions (Sudd, Southern Africa and Congo) where we find the performance of JULES to be poor and explore the reasons for this in detail. We find that neither wetland extent configuration used is sufficient in representing the wetland distribution in these regions (underestimating the wetland seasonal cycle amplitude by 11.1, 19.5 and 10.1 ppb respectively, with correlation coefficients of 0.23, 0.01 and 0.31). We employ the Catchment-based Macro-scale Floodplain (CaMa-Flood) model to explicitly represent river and floodplain water dynamics and find that these JULES-CaMa-Flood simulations are capable of providing a wetland extent that is more consistent with observations in this regions, highlighting this as an important area for future model development.</p

    The Linkages Between Photosynthesis, Productivity, Growth and Biomass in Lowland Amazonian Forests

    Get PDF
    Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling

    The UKC2 regional coupled environmental prediction system

    Get PDF
    It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather mediated through various components of the environment, require a more integrated Earth System approach to forecasting. This hypothesis can be explored using regional coupled prediction systems, in which the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land can be simulated. Such systems are becoming increasingly common research tools. This paper describes the development of the UKC2 regional coupled research system, which has been delivered under the UK Environmental Prediction Prototype project. This provides the first implementation of an atmosphere–land–ocean–wave modelling system focussed on the United Kingdom and surrounding seas at km-scale resolution. The UKC2 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled, via OASIS3-MCT libraries, at unprecedentedly high resolution across the UK within a north-western European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a new research tool for UK environmental science. This paper documents the technical design and implementation of UKC2, along with the associated evaluation framework. An analysis of new results comparing the output of the coupled UKC2 system with relevant forced control simulations for six contrasting case studies of 5-day duration is presented. Results demonstrate that performance can be achieved with the UKC2 system that is at least comparable to its component control simulations. For some cases, improvements in air temperature, sea surface temperature, wind speed, significant wave height and mean wave period highlight the potential benefits of coupling between environmental model components. Results also illustrate that the coupling itself is not sufficient to address all known model issues. Priorities for future development of the UK Environmental Prediction framework and component systems are discussed

    Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations

    Get PDF
    Wetlands are the largest natural source of methane. The ability to model the emissions of methane from natural wetlands accurately is critical to our understanding of the global methane budget and how it may change under future climate scenarios. The simulation of wetland methane emissions involves a complicated system of meteorological drivers coupled to hydrological and biogeochemical processes. The Joint UK Land Environment Simulator (JULES) is a process-based land surface model that underpins the UK Earth System Model (UKESM) and is capable of generating estimates of wetland methane emissions. In this study, we use GOSAT satellite observations of atmospheric methane along with the TOMCAT global 3-D chemistry transport model to evaluate the performance of JULES in reproducing the seasonal cycle of methane over a wide range of tropical wetlands. By using an ensemble of JULES simulations with differing input data and process configurations, we investigate the relative importance of the meteorological driving data, the vegetation, the temperature dependency of wetland methane production and the wetland extent. We find that JULES typically performs well in replicating the observed methane seasonal cycle. We calculate correlation coefficients to the observed seasonal cycle of between 0.58 and 0.88 for most regions; however, the seasonal cycle amplitude is typically underestimated (by between 1.8 and 19.5 ppb). This level of performance is comparable to that typically provided by state-of-the-art data-driven wetland CH4 emission inventories. The meteorological driving data are found to be the most significant factor in determining the ensemble performance, with temperature dependency and vegetation having moderate effects. We find that neither wetland extent configuration outperforms the other, but this does lead to poor performance in some regions. We focus in detail on three African wetland regions (Sudd, Southern Africa and Congo) where we find the performance of JULES to be poor and explore the reasons for this in detail. We find that neither wetland extent configuration used is sufficient in representing the wetland distribution in these regions (underestimating the wetland seasonal cycle amplitude by 11.1, 19.5 and 10.1 ppb respectively, with correlation coefficients of 0.23, 0.01 and 0.31). We employ the Catchment-based Macro-scale Floodplain (CaMa-Flood) model to explicitly represent river and floodplain water dynamics and find that these JULES-CaMa-Flood simulations are capable of providing a wetland extent that is more consistent with observations in this regions, highlighting this as an important area for future model development

    Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

    Get PDF
    Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+. Though broad scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8–50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass (AGB) at spatial grains ranging from 5 to 250m (0.025–6.25 ha), and we evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that the spatial sampling error in AGB is large for standard plot sizes, averaging 46.3% for 0.1 ha subplots and 16.6% for 1 ha subplots. Topographically heterogeneous sites showed positive spatial autocorrelation in AGB at scales of 100m and above; at smaller scales, most study sites showed negative or nonexistent spatial autocorrelation in AGB. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGB leads to a substantial “dilution” bias in calibration parameters, a bias that cannot be removed with current statistical methods. Overall, our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise

    How contemporary bioclimatic and human controls change global fire regimes

    Get PDF
    Anthropogenically driven declines in tropical savannah burnt area have recently received attention due to their effect on trends in global burnt area. Large-scale trends in ecosystems where vegetation has adapted to infrequent fire, especially in cooler and wetter forested areas, are less well understood. Here, small changes in fire regimes can have a substantial impact on local biogeochemistry. To investigate trends in fire across a wide range of ecosystems, we used Bayesian inference to quantify four primary controls on burnt area: fuel continuity, fuel moisture, ignitions and anthropogenic suppression. We found that fuel continuity and moisture are the dominant limiting factors of burnt area globally. Suppression is most important in cropland areas, whereas savannahs and boreal forests are most sensitive to ignitions. We quantify fire regime shifts in areas with more than one, and often counteracting, trends in these controls. Forests are of particular concern, where we show average shifts in controls of 2.3–2.6% of their potential maximum per year, mainly driven by trends in fuel continuity and moisture. This study gives added importance to understanding long-term future changes in the controls on fire and the effect of fire trends on ecosystem function
    • 

    corecore