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ABSTRACT 

Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field 

studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but 

logged or secondary forests have received much less attention. Here we report the first 

measures of total net primary productivity (NPP) and its allocation along a disturbance 

gradient from old-growth forests to moderately and heavily logged forests in Malaysian 

Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-

growth (n=6) and logged (n=5) 1 ha forest plots. Overall, the total NPP did not differ between 

old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha
-1

 year
-1

, respectively). 

However, logged forests allocated significantly higher fraction into woody NPP at the 

expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-

growth forest vs. 66% and 23% in logged forest). When controlling for local stand structure, 

NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-

growth stands with similar basal area, but this was offset by structure effects (higher gap 

frequency and absence of large trees in logged forest). This pattern was not driven by species 

turnover: the average woody NPP of all species groups within logged forest (pioneers, non-

pioneers, species unique to logged plots and species shared with old-growth plots) was 

similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit 

higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades 

after the logging event. Given that the majority of tropical forest biome has experienced some 

degree of logging, our results demonstrate that logging can cause substantial shifts in carbon 

production and allocation in tropical forests.  
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INTRODUCTION  

The tropical forest biome plays a dual role in the global carbon budget. On the one hand, it 

forms a large terrestrial carbon sink of approximately 1.0±0.5 Pg C yr
-1

 (Pan et al., 2011), 

accounting for 40% of the global land C sink (Malhi, 2010; Ciais et al., 2013). On the other 

hand, carbon emissions from tropical forest degradation and deforestation, 1.1±0.8 Pg C yr
-1

, 

make up >90% of the total emission from land use and land use change, which currently 

account for 12% of all anthropogenic carbon dioxide emissions (Ciais et al., 2013) .  

Today, approximately 75% (1713 M ha) of the original, pre-industrial tropical forest area 

remains (FAO, 2015; Keenan et al., 2015). Of the extant tropical forest area, only 30% is 

relatively undisturbed (Potapov et al., 2008). The remaining area has been modified by 

humans, mostly through selective logging. Hence, the most pervasive aspect of global change 

in tropical forests is probably neither deforestation nor climate change, but the increasing 

transformation (approximately 12 M ha year
-1

; FAO, 2015) of high biomass, slow-turnover, 

old-growth forests into lower biomass, higher turnover post-disturbance forests (Malhi et al., 

2014). Selective logging changes the forest carbon cycle by altering forest structure, 

dynamics, composition, and microclimate, and, as a result, the functioning of the ecosystem. 

Standing carbon stocks and the amount of metabolically active tissue decrease, while 

necromass increases. Gaps left by the removed and dying trees make the physical 

environment more exposed, altering radiation, temperature, humidity, and soil moisture 

regimes (Hardwick et al., 2015). In addition to the changes in microclimate, logging 

operations cause soil disturbance, loss of top soil and soil compaction, especially around 

logging roads, skid trails and logging platforms, which may cover up to 25% of logged forest 

areas (Yamada et al., 2014). Competition both above- and below-ground is reduced and 

resource availability (e.g. light in gaps, extra nutrients from logging residue and decomposing 

necromass) increases. The selective removal of large, commercially valuable canopy trees 
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that dominate the biomass stock (Sist et al., 2014) changes the size and age structure and 

species composition of the forest. The colonisation of gaps by pioneer species further alters 

the community composition (Sist & Nguyen-The, 2002), especially if all canopy species, and 

therefore their seed source, have been removed. Typically, the community shifts from slow-

growing, conservative, shade-tolerant species towards fast-growing, acquisitive, light-

demanding species (Bischoff et al., 2005; Carreno-Rocabado et al., 2012; Saner et al., 2012). 

In the shorter term, logging decreases primary productivity and increases heterotrophic 

respiration (Huang & Asner, 2010). As the forest starts to recover, however, the woody 

biomass accumulation rate in logged forest may be several times higher than in old-growth 

forest (Blanc et al., 2009; Berry et al., 2010).  

Almost all studies of biomass production and recovery in logged forests focus only on above-

ground woody biomass (e.g. Blanc et al., 2009; Huang & Asner, 2010; Berenguer et al., 

2014). Although woody production is a significant proportion of net primary production 

(NPP), typically 39% ±10% in old-growth tropical forests (Malhi et al., 2011), carbon fixed 

through photosynthesis is also allocated to production of leaves, roots, flowers, fruits, and 

other ecosystem components. A more complete understanding of biomass production can be 

attained through assessment of NPP. 

NPP is the amount of carbon assimilated through photosynthesis that is converted into new 

tissue, root exudates and volatile organic compounds. In old-growth tropical forests, plants 

use approximately 60-70% of gross primary productivity (GPP) on their own metabolism, 

releasing the assimilated CO2 back to the atmosphere through autotrophic respiration 

(Chambers et al., 2004; Malhi et al., 2009; Malhi, 2012; Anderson‐Teixeira et al., 2016). 

Thus, the carbon use efficiency (proportion of GPP converted to NPP) is estimated to be 

about 30-40% in old-growth forests, but may be substantially higher in post-disturbance 

forests where rapid growth and resource acquisition is prioritised over maintenance and 
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defence. A pan-tropical analysis of NPP allocation into canopy, woody, and fine root NPP 

(which, together, account for ~90% of the total NPP)  indicates roughly equal partitioning 

into these three components in old-growth forests, but site-specific variation is considerable 

(Malhi et al., 2011). 

In recent years, there have been an increasing number of studies of above- and below-ground 

NPP in tropical old-growth forest sites (e.g. Clark et al., 2001; Aragão et al., 2009; Malhi et 

al., 2011; Malhi et al., 2015, Moore et al. 2017). However, as far as we are aware, there has 

been no assessment of above- and below-ground NPP for tropical logged forests; the most 

comprehensive synthesis of the existing empirical data on tropical forest carbon stocks and 

fluxes to date contains no estimates of total NPP for logged forests and only one estimate of 

total NPP for a naturally regenerating secondary forest (Anderson‐Teixeira et al., 2016). 

Given that the area of logged and human-modified forest exceeds that of old-growth forests 

(FAO, 2015), quantifying the carbon dynamics of logged forests is essential for 

understanding the carbon balance of the tropical forest biome. 

In this study we present the first quantification of total net primary productivity and its 

allocation into woody, canopy and fine root NPP along a disturbance gradient from old-

growth to heavily logged forest. Specifically, we addressed the following questions: 

- How do total NPP and its allocation to canopy, woody and fine root components vary 

along a disturbance gradient from old-growth to heavily logged forests? 

- Are the high woody growth rates reported for logged forests the result of an increase 

in NPP or a shift in allocation in favour of woody production, or some combination of 

these two factors?  

- To what extent are the shifts in NPP along the disturbance gradient determined by 

species turnover, in particular, the presence of pioneer species? 
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- What is the relative contribution of shifts in tree carbon budgets (changes in 

productivity and allocation) vs. changes in stand density and structure (gaps, reduced 

number of large trees) in determining the net change in NPP and its allocation 

between logged and old-growth forests? 

 

MATERIALS AND METHODS 

Study sites 

The study sites were located in Malaysian Borneo, in the states of Sarawak and Sabah. This 

area is a global hotspot of logging and forest conversion. By 2009, 28% of the original forest 

area of Sabah and Sarawak had been converted to plantations, predominantly oil palm, and 

72% of the remaining forest area had been selectively logged (Bryan et al., 2013). Climate in 

the region is moist tropical, with an annual daily mean temperature of 26.7°C (Walsh & 

Newbery, 1999). Annual precipitation is approximately 2600-2700 mm (Walsh & Newbery, 

1999; Kumagai & Porporato, 2012). There are no distinct dry seasons, but approximately 

12% of months experience rainfall of <100 mm month
-1

 (Walsh & Newbery, 1999). The area 

experiences severe droughts linked to El Niño events approximately every ten years, with 

some evidence that the drought frequency is increasing (Walsh & Newbery, 1999; Malhi & 

Wright, 2004; Katayama et al., 2009). 

Five plots formed a disturbance gradient from heavily to moderately logged forest sites, 

located in Kalabakan Forest Reserve, Sabah (Table 1). Six plots were located in old-growth 

forest (two in Danum Valley Conservation area, Sabah; two in Maliau Basin Conservation 

Area, Sabah; and two in Lambir Hills National Park, Sarawak) where there was no evidence 

of logging or human disturbance of vegetation (apart from indirectly through heavy 
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defaunation in Lambir; Harrison et al., 2013) (for map, see Fig. S1). All plots had a 

planimetric area of 1 ha, divided into 25 subplots of 20 m × 20 m. The logged plots in 

Kalabakan Forest Reserve and the old-growth plots in Maliau are part of the Stability of 

Altered Forest Ecosystem (SAFE) Project, a large-scale forest fragmentation experiment 

(Ewers et al., 2011; www.safeprojet.net). 

The forests in the region are extremely species rich. Lambir has the highest recorded tree 

species diversity in the Paleotropics (Lee et al., 2002). In all plots, Euphorbiaceae and 

Dipterocarpaceae were the most species-rich families among trees >10 cm DBH, with the 

Dipterocarpaceae dominating in overall biomass. In the old-growth plots, the most common 

genera were the Dipterocarps Shorea and Parashorea in Maliau, Shorea and Dryobalanops 

in Lambir, and Shorea and Diospyros (Ebenaceae) in Danum, while in the logged plots the 

most common genera were Macaranga (Euphorbiaceae), Shorea (Diptocarpaceae) and 

Syzygium (Myrtaceae).On average 46% (range: 27% to 58%) of the basal area in the logged 

plots comprised of species that were also found in old-growth plots (Table S1). The basal 

area proportion of pioneer species (Table S1) in the logged plots ranged from 7% to 57% 

(Table 1). 

In the SAFE Project area, the forest had been selectively logged two (SAF-03, SAF-04) or 

four (SAF-01, SAF-02, SAF-05) times. The first round of logging took place in mid-1970s, 

followed by one to three repeated rounds during 1990-2008. Approximately 113 m
3
 ha

-1
 of 

timber was removed during the first rotation and an additional cumulative volume of 37 to 66 

m
3
 ha

-1 
during the subsequent rotations, which is similar to the mean extracted volume of 152 

m
3
 ha

-1 
within a larger, 220 000 ha area in Sabah (Fisher et al., 2011; Struebig et al., 2013). 

Converted to biomass, this sums to approximately 46 to 54 Mg C ha
-1 

extracted during the 30-

year period. However, total biomass loss was several times higher (estimated to be 94-128 

Mg C ha
-1

; Pfeifer et al., 2016), due to collateral damage, increased mortality after the 
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logging (Pearson et al., 2014; Shenkin et al., 2015), and abandonment of some of the felled 

trees in the forest (data not available for SAFE, but in Indonesian Borneo typically 25% of 

the stems; Griscom et al., 2014). As the area is earmarked for conversion to oil palm 

plantation in 2015-2017 (Ewers et al., 2011), the prescribed logging rotation of sixty years 

was not followed, and repeated rounds of logging have left parts of the area highly degraded 

(Reynolds et al., 2011) (the plots will not be converted, but will remain inside forest 

fragments, except SAF-05 Plot). The logging targeted – but was not limited to – medium-

density hardwoods (genera Dryobalanops and Dipterocarpus) and lighter hardwoods (Shorea 

and Parashorea). There was a high level of small scale spatial variation in logging intensity, 

due to differences in topography, proximity to roads, and available timber, which created a 

gradient from heavily to moderately logged sites. Pre-logging biomass of the plots was 

obtained from digitised forest inventory maps from the 1970s, provided by the Natural Forest 

Research Programme of the Forest Research Centre, Sabah Forestry Department (Fig. 1). The 

original data was based on the first Sabah forest inventory in 1969-1972 which used the 

combination of aerial photos (1:25000), and stratified field sampling (Forestal International, 

1973; Munang, 1978). Our study plots were assumed to have the pre-logging biomass of the 

segment they belonged to. In addition, to describe the change in forest structure and 

composition, we used four metrics to characterise the level of disturbance within each plot: 

basal area, canopy gap fraction (estimated from hemispherical photos), number of stems >50 

cm diameter, and pioneer proportion (Table 1, Table S1).  

The soils are orthic Acrisols or Ultisols in the Sabah plots and humult Utisols or udult Utisols 

in the Sarawak plots (for a comprehensive description of the soil types, see Marsh & Greer, 

1992; Sylvester et al., 2009; Kho et al., 2013; Nainar et al., 2015). There were no clear 

differences between sites (SAFE, Danum, Maliau and Lambir) or forest types (logged, old-

growth) in soil nutrient concentrations or physical properties (Table S2, Fig. S2). Despite the 
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geographic proximity of the logged plots, there was more variation in the soil characteristics 

among the logged plots than among the old-growth plots. 

  

NPP estimates 

The plots are part of the pantropical GEM (Global Ecosystems Monitoring) Intensive Carbon 

Plot network (http://gem.tropicalforests.ox.ac.uk/; Marthews et al., 2012). We quantified the 

following NPP components: woody NPP (stems, coarse roots and branches), canopy NPP 

(leaves, twigs and reproductive parts) and fine root NPP. NPP data for the SAFE, Maliau and 

Danum (Sabah) plots were collected in 2011-2016, over a 24 month period in each plot, and 

tree census was carried out at least twice. NPP data for the Lambir (Sarawak) plots were 

collected for 15 months during 2008-2010, and trees were censused every five years between 

1992 and 2008; these Lambir NPP data have already been published elsewhere (Kho et al., 

2013). 

 Woody NPP 

Woody NPP was quantified as the sum of stem NPP, coarse root NPP and branch turnover 

NPP. All stems of trees and lianas >10 cm diameter at 1.3 m height (DBH) were tagged and 

the diameter was measured to the nearest millimetre. Measurement height was adjusted if the 

stem was not smooth at 1.3 m (buttresses, branching etc.). Small stems of trees and lianas of 

2-10 cm DBH were tagged and measured in five subplots per plot in SAFE and in Maliau and 

in all subplots in Lambir and Danum. All plots were re-censused at least once. Stem height 

was estimated visually for all trees and calibrated against clinometer measurements for a 

subsample of 200 stems ranging from 6 to 63 m height. Height was not estimated during the 

recensus, as the change in height was considered too small to be detected reliably. Instead, a 

diameter to height relationship was estimated (exponential rise to maximum function, R
2
 = 
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0.66 - 0.97, depending on the plot) and the height increment, as percentage change in height 

corresponding to the change in diameter, was derived from the curve for each stem. 

Above-ground woody biomass was estimated using allometric equations for moist tropical 

forest, with diameter, height and wood density as inputs (Chave et al., 2005). Wood density 

for each species (or in the absence of species ID, average by genus or family) was derived 

from the global wood density database (Chave et al., 2009; Zanne et al., 2009) or from local 

measurements (Kho et al., 2013). We assumed a carbon content of 47.4% of dry biomass for 

all woody components (Martin & Thomas, 2011). Coarse root biomass was estimated using 

an allometric relationship between DBH and coarse root biomass (Eq. 1, Eq. 2), based on a 

root excavation study in a lowland dipterocarp forest in Pasoh Forest Reserve in Peninsular 

Malaysia (Niiyama et al., 2010): 

Coarse root biomass (stems ≥ 2.5 cm DBH) = 0.023 × DBH^2.59  (Eq. 1) 

Coarse root biomass (stems < 2.5 cm DBH) = 0.079 × DBH^1.04  (Eq. 2) 

where coarse root biomass per stem is in kg and DBH in cm. 

Stem and coarse root NPP were calculated as the increase in biomass in surviving trees 

between two subsequent censuses plus biomass of new recruits minus biomass loss through 

mortality. We assumed that stems that had died between censuses and new recruits that 

reached the DBH threshold between censuses did so, on average, in the middle of the census 

interval. 

Branch turnover NPP was estimated in 25 quadrats of 2 m × 2 m in the plots in Sabah, and in 

four transects of 100 m × 1 m in the plots in Sarawak. All branches >2 cm diameter were 

collected every three to six months, weighed in the field and classified into five decay classes 

(Harmon et al., 1995).  The first survey quantified the stock, rather than production of the 
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new material. Sub-samples from each decay class in each quadrat were brought back to the 

laboratory to determine the dry mass and mean wood density of each class. The dry mass of 

the pieces belonging to classes 2-5 were converted to recently fallen (class 1) mass, using a 

conversion factor (Eq 3): 

 MassRF_class(i) = Mass_class(i) × Density_class1 /  Density_class(i) (Eq. 3) 

where the MassRF_class(i) is the mass in decay classes 2-5 converted into recently fallen 

mass, Mass_class(i) is the measured mass in decay classes 2-5, and Density_class1 and 

Density_class(i) is the wood density in decay class 1 and wood density in decay classes 2-5, 

respectively. In subsequent censuses any fallen branches from dead trees were excluded, as 

we were interested in the branch turnover term. 

Canopy NPP 

Fine litter fall (leaves; twigs, woody tissue and branches≤2 cm diameter; reproductive parts; 

undefined fine debris) was used as a proxy for canopy production. Litter was collected every 

14 to 21 days from  50 cm × 50 cm litter traps, 1 m above the ground (n=25 per plot),  dried 

at 70°C until constant weight, and sorted into components.  Litter carbon content was 

assumed to be 50%.  

Fine root NPP 

Fine root NPP was measured using cylindrical root in-growth cores of 12 cm diameter and 30 

cm depth, made of wire mesh (n=16 per plot in Sabah, n=9 per plot in Sarawak). At the 

installation, all roots were extracted and the core was filled with the root free soil. The root 

mass at the first installation quantified the root stock rather than production. The cores were 

then harvested every three months, roots extracted, cleaned, dried (70°C until constant 

weight) and weighed. Roots in each core were searched in the forest for a fixed time (4×5 

min or 4×10 min) and the total root mass in the sample was estimated from a cumulative root 
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mass over time curve (Metcalfe et al., 2007; Kho et al., 2013), solved to 120 minutes. This 

method allows the root search time to be kept within a reasonable limit in the field while 

taking into account that a small fraction of roots is likely to remain unextracted. Root dry 

mass was converted into carbon by assuming a carbon content of 50%. Based on fine root 

mass in the top 30 cm soil layer, we estimated the fine root mass to 1 m depth by applying a 

correction factor of 1.125, derived from a root depth profile determined in Pasoh Forest 

Reserve in Peninsular Malaysia (Yoda, 1978; Kho et al., 2013). 

Missing components of NPP 

Somewhat inevitably, any estimate of NPP may be biased towards underestimation because it 

neglects several small NPP terms, such as NPP lost as volatile organic emissions, non-

measured litter trapped in the canopy, NPP lost to herbivory, or dropped from understorey 

plants below the litter traps. At a site in central Amazonia, volatile emissions were found to 

be a minor component of the carbon budget (0.13±0.06 Mg C ha
-1

 year
-1

; Malhi et al., 2009). 

Kurokawa and  Nakashizuka (2008) estimated a leaf herbivory rate of 4.9% for Lambir, 

equivalent to 0.2-0.3 Mg C ha
-1

 year
-1

 (Kho et al., unpublished analysis). For below-ground 

NPP, the allocation to root exudates and to mycorrhizae is neglected, but can account for 5-

10% of NPP in tropical forests (Doughty et al, 2017). Kho et al. (unpublished analysis) 

estimate an allocation to mycorrhizae of 1.3-1.4 Mg C ha
-1

 year
-1

. These terms are 

challenging to measure, and here we focus on canopy, woody and fine root productivity, 

which are likely to account for over 85% of NPP, while recognising that these missing 

components do exist. The three missing terms above are likely to account for 10-13% of total 

NPP in Lambir (Kho et al., unpublished analysis), with transport to mycorrhizae being the 

most important.  
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Data analysis 

The focus of this paper was to quantify the spatial variation in NPP (within and among plots, 

and between old-growth and logged forest) rather than to examine temporal trends. 

Therefore, all temporal replicates of each spatial replicate were pooled to derive a mean value 

for that sampling unit over the study period. These values were then used in the analyses. 

The impact of logging disturbance on NPP was examined in two ways: by comparing the two 

forest types (old-growth and logged) by plot and by looking at the data along a finer scale 

disturbance gradient, wherein parts of each plot may represent a different level of 

disturbance. At the plot scale, the differences in total NPP and its components between forest 

types were tested using generalised least squares models, with forest type as a fixed factor 

(site was tested as a random effect, but did not improve the models). The models were run 

using R (R Core Team, 2014), with the package ‘nlme’ (Pinheiro et al., 2014). To test 

whether the relative allocation into the main NPP components (woody, canopy and fine root 

NPP) and canopy NPP allocation into different litter fractions (leaf, twigs, reproductive and 

undefined debris) differed between the forest types, we used a linear model for compositional 

data (Pawlowsky-Glahn & Buccianti, 2011), in the R package ‘compositions’ (van den 

Boogaart, 2008; van den Boogaart et al., 2014). 

Along the disturbance gradient, differences in NPP and its allocation are influenced by 

factors of two different types: (i) a change in total NPP (which we will term ‘the productivity 

effect’) and/or shift in allocation patterns (‘the allocation effect’) in the plants; and (ii) 

changes in stand structure and density (‘the structure effect’). The structure effect may result 

from the reduction in the number of stems, particularly large stems, which may reduce overall 

NPP and also affect allocation patterns if allocation shows allometric relationships with tree 

size, and/or from an almost complete loss of stems and NPP in very open and degraded 

patches, such as old logging platforms. To assess the magnitude and relative importance of 
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these effects, we conducted an analysis at sub-plot level, controlling for variation in stand 

basal area. At the subplot scale, basal area correlated with the mean and maximum diameter 

of stems >10 cm DBH (Fig. S3). For a given basal area, both the mean and maximum 

diameter were slightly lower in logged forest than in old-growth forest (a difference of 1.2 

cm, p=0.007 and 4.5 cm, p=0.047 for mean and maximum diameter, respectively). However, 

there was a large overlap in the data distribution across the basal area range, compared to 

which the observed differences were small, indicating that at a similar basal area, the stand 

structure in the two forest types is comparable. 

Variation in NPP along the disturbance gradient was partitioned into productivity effect, 

allocation effect and structure effect as follows: The total basal area range at the subplot scale 

within the dataset (each 20 m × 20 m subplot forming one data point) was 0-102 m
2
 ha

-1
, and 

the overlapping basal area range for logged and old-growth forest was of 7-51 m
2
 ha

-1
. For 

the overlapping range, we assumed that the structure effect caused no variation in NPP 

between the forest types. Therefore, the difference in total NPP between the forest types 

within that range was used as an estimate for the productivity effect. The difference in total 

NPP at the non-overlapping basal area range (<7 m
2
 ha

-1
 or >51 m

2
 ha

-1
) was used as an 

estimate for the structure effect. At the NPP component (canopy, woody and fine root) scale, 

allocation effect had to be taken into account, in addition to the productivity and structure 

effects. The allocation effect was quantified by comparing the differences in NPP with 

observed allocation and assuming no difference in allocation (logged forest canopy, woody 

and fine root NPP recalculated, assuming the observed logged forest total NPP, but old-

growth forest allocation pattern). In these analyses, old-growth forest was used as reference, 

against which the effects of logging were quantified. The area proportions of the overlapping 

and non-overlapping basal area zones were taken into account when calculating the overall 

importance of the productivity, allocation and structure effects. 
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NPP along the basal area gradient was modelled using a general additive mixed effects model 

(GAMM), with basal area of trees >10 cm DBH as an additive smoother and plot as a random 

effect. The data followed a gamma distribution (NPP values are non-negative, variance 

increases with increasing mean). The models were run using R packages ‘nlme’ (Pinheiro et 

al., 2014) and ‘mgcv’ (Wood, 2011), following the protocols outlined by Zuur et al. (2009). 

We compared models with a single overall smoother or a separate smoother by forest type, 

and the best model in each case was chosen using an information theoretic approach 

(Burnham and Anderson 2002) by comparing the possible models using Akaike’s 

Information Criterion (Akaike 1974), corrected for small sample sizes (AICC) (R package 

'AICcmodavg'; Mazerolle, 2015). 

To assess the extent to which the difference in logged forest and old-growth forest NPP were  

caused by tree species turnover, the species were classified into shared (present in both 

logged and old-growth plots) and unique (present in only one forest type) species and into 

pioneers and non-pioneers (Table S1). We then compared the woody NPP by these species 

groups (mixed effects model with the group as a fixed factor, diameter as a covariate and plot 

as a random effect), and the relationship between the pioneer basal area and pioneer woody 

NPP at each plot and subplot. The number of pioneer stems in the old-growth plots (n=11 for 

all six plots combined, <1% of the stems) was too small to be included in the analysis. Note 

that the canopy NPP and fine root NPP cannot be partitioned into species groups due to 

method constraints – several species contribute to the values derived from each spatial 

replicate (litter traps and root in-growth cores).  
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RESULTS 

Carbon stocks and forest structure 

Logged forest only had a third of the old-growth forest woody biomass (above-ground woody 

+ coarse root biomass), 87±15 vs. 268±34 Mg C ha
-1

, respectively (Fig. 1). In the moderately 

logged plots the smaller biomass was mainly due to the absence of large (>50 cm DBH) 

stems. However, in the most heavily logged plots the biomass was lower across all diameter 

classes (Fig. 2; Fig. S4). In contrast, the mean pre-logging (1970s) biomass of the logged 

forest (176±19 Mg C ha
-1

) was similar to the current biomass in the old-growth forest 

(F1,9=274.3, p=0.745).  The partitioning of woody biomass between above- and below-ground 

components was similar in both forest types, with 20%±1.4% and 19% ±0.9% partitioned 

below ground in logged and old-growth forest, respectively.  

 

Component and total net primary productivity 

The logged forest plots had higher woody NPP than old-growth forest plots (F1,9 =11.35, 

p=0.008), owing to the higher woody NPP in the small and intermediate diameter classes 

(Fig. 2; Fig. 3b; Fig. S4). Individual trees across all diameter classes showed higher growth in 

the logged plots compared with the old-growth plots (Fig. 2c). However, in the logged plots 

the number of large trees, and thus their contribution to the plot level woody NPP, was small, 

(Fig. 2a, Fig. 2c). All tree species groups in the logged plots had a higher woody NPP per 

stem than the groups in the old-growth plots (pair-wise comparisons, all p-values <0.01), 

including those species that were found in both forest types (Fig. 4). Within each forest type, 

the groups did not differ from one another (all p-values >0.05).  
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Canopy NPP was lower in logged forest (F1,9 =24.91, p<0.001), while fine root NPP was 

similar in both forest types (F1,9 =0.832, p=0.385) (Fig. 3a,c). In logged forest, on average 

87%±2.1% of the canopy NPP was allocated to leaves, 8.5%±1.4% to twigs and 1.7%±0.7% 

to reproductive parts, while 2.5%±0.2% of the sample mass was unidentified debris (most 

likely to be leaf material). The corresponding values in the old-growth forest were 78%±4.2% 

(leaves), 12%±1.9% (twigs), 1.7%±1.7% (reproductive) and 6.4%±1.3% (debris). The 

allocation of the canopy components into different fractions did not differ between the forest 

types (F2,9=1.980, p=0.206 and  F2,9=3.337, p=0.088, with debris included and excluded, 

respectively).  

Total NPP was similar in both forest types (F1,9=1.791, p=0.214), on average 15.7±1.50 Mg 

C ha
-1

 year
-1

 in logged forest and 13.5±0.51 Mg C ha
-1

 year
-1

 in old-growth forest (Fig. 3d).  

 

NPP allocation to canopy, woody, and fine root NPP 

At the plot scale, NPP allocation differed significantly between logged and old-growth plots 

(Fig. 3d, Fig. 5) (F2,8=18.227, p=0.001).  There was a clear shift in allocation from canopy to 

woody NPP in the logged forest (66%±2.2% allocated to woody NPP, 23%±1.6% to canopy 

NPP), compared with old-growth forest (42%±4.2% to woody NPP, 48%±3.6% to canopy 

NPP). Allocation to fine roots was similar in both forest types (11%±1.6% in logged, 

10%±1.5% in old-growth forests).  

 

Productivity, allocation and structure effects 

The patterns in NPP at the basal area range where logged and old-growth forest data overlap 

(thus, assuming that no difference in NPP between the two forest types was caused by 
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structure effect) were used for distinguishing the productivity and allocation effects. When 

controlled for basal area within this range (7-51 m
2
 ha

-1
), total NPP was approximately 41% 

higher in logged forest than in old-growth forest when averaged across subplots (Fig. 6). In 

addition, the allocation to different NPP components differed between the forest types. 

Across the overlapping basal area range, logged forest had 150% higher woody NPP and 

46% higher fine root NPP than old-growth forest. Logged forest canopy NPP, on the other 

hand, was 38% lower. 

The shapes of the basal area response curves illustrate structure effects (Fig. 6). These were 

particularly clear in logged forest, especially regarding canopy and woody NPP: canopy and 

woody NPP were low when basal area was small, and increased sharply and linearly with 

increasing basal area (though there is probably important herbaceous layer NPP in these gaps, 

which we do not account for). The threshold appeared at the basal area of approximately 10 

m
2
 ha

-1 
for canopy and woody NPP (a threshold that may suggest canopy closure), after 

which the slope became less steep. As a result, total NPP in logged forest also followed this 

pattern. However, fine root NPP showed a more consistently linear relationship with basal 

area and no clear basal area threshold. The old-growth forest plots did not have subplots with 

low basal areas, and in these plots all responses were relatively linear, or in the case of the 

canopy NPP, showed little relationship with basal area. Hence, canopy NPP was relatively 

insensitive to forest structure above a threshold basal area of canopy closure in both logged 

and old-growth forests, while woody, fine root and total NPP showed a greater sensitivity to 

basal area in logged forests than in old-growth forests. Slopes of linear regressions when 

basal area >10 m
2
 ha

-1
 did not differ between logged and old-growth forest for canopy NPP 

(p=0.840), was marginally significant for woody NPP (p=0.053), and did differ for fine root 

NPP (p=0.028) and total NPP (p=0.022) (the results were similar when basal area threshold 

was increased to >20 m
2
 ha

-1
). 
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The relative importance of the productivity, allocation and structure effects on the variation in 

NPP between logged and old-growth forest is summarised in Figure 7. Compared with old-

growth forest, the productivity effect increased the logged forest NPP by 31%. However, this 

effect was partly offset by the structure effect (logged forest plots having many subplots with 

very low basal area and no subplots with very high basal area; see data distribution rugs in 

Fig. 6), which lowered the logged forest NPP by 15%. The net effect was that NPP was only 

slightly (not significantly) higher in the logged forest at the 1 ha plot scale (Fig. 3d), although 

the difference between the two forest types within the overlapping basal area range was more 

marked. Woody NPP showed the largest difference between the forest types, being 83% 

higher in logged forest than in old-growth forest (Fig. 7) as a result of positive productivity 

and allocation effects. Canopy NPP, on the other hand, was smaller in logged forest 

(allocation effect -61%). Fine root NPP was similar in both forest types (slightly higher in 

logged forest but not significant at the plot scale). 

 

DISCUSSION 

NPP and its allocation along the disturbance gradient from old-growth to heavily logged 

forest 

To our knowledge, these are the first comprehensive NPP estimates for human-modified 

tropical forests, describing all the main NPP components. In these forests, total NPP was 

similar in both forest types, although logged forests showed more variation, both within and 

among plots. In a previous publication, NPP estimates in the two plots in Lambir were put 

into pan-tropical context (see Table 3 in Kho et al., 2013), showing that NPP in Bornean old-

growth forests is higher (this study: 13.5 Mg C ha
-1

 year
-1

, with SE of 0.519 Mg C ha
-1

 year
-1

) 

than the tropical average (11.2 ± 0.73 Mg C ha
-1

 year
-1

), but not exceptionally so.  
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Despite similar productivity in logged and old-growth forests, the legacy of logging was 

evident in the significantly reduced woody carbon stocks in logged forests. The absence of 

the largest trees contributed most to the lower carbon stocks in logged plots, but it is 

noteworthy that the carbon stock and the number of stems was lower even in the smallest 

diameter classes in the heavily logged plots compared with old-growth plots, which is similar 

to the pattern observed in Indonesian Borneo (Cannon et al., 1994). The logged plots had 

experienced on average a 50% reduction in their woody carbon stocks.  This is representative 

for the larger Yayasan Sabah Forest Management Area, which covers nearly a third of the 

forest area in Sabah (Fisher et al., 2011; Reynolds et al. 2011), similar to the values reported 

elsewhere in Sabah (53%, Berry et al., 2010), and in line with other parts of Borneo, where 

remaining basal area has been recoded as 14 m
2
 ha

-1
 (SD =7) and 18 m

2
 ha

-1
 (SD=10) in 

sparse and dense canopy fagments, respectively (Cannon et al., 1994). Although the logging 

intensity in this study and in South East Asia in general is probably higher than the global 

average, the biomass loss is comparable to what has been reported in Brazil (35-57%, 

Berenguer et al., 2014) and Africa (20-72%, Valentini et al., 2014; Cazolla Gatti et al., 

2015). 

Although the total NPP did not differ between forest types, there was a very clear difference 

in NPP allocation: logged forest allocated considerably more to woody NPP than to canopy 

NPP (66%±2.2% to woody, 23%±1.6% to canopy), compared with old-growth forests 

(42%±4.2% to woody, 48%±3.6% to canopy).  A similar shift between canopy and woody 

allocation was reported when comparing young naturally regenerating regrowth forests with 

old intact forests (Anderson‐Teixeira et al., 2016). Since the results demonstrate a clear 

allocation shift between logged and old-growth forest, this highlights the importance of 

measuring all main NPP components, rather than using only one of them as a proxy for total 

NPP. In old-growth tropical forests, canopy NPP was found to be the best predictor of the 
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total NPP both at Amazonian (Aragão et al., 2009; Girardin et al., 2010) and pan-tropical 

scales (Malhi et al., 2011), with allocation to canopy showing less variation than the 

allocation to other NPP components. Although this was the case for the old-growth plots in 

this study as well, the results from the logged plots of this study and from regrowth forests 

globally (Anderson‐Teixeira et al., 2016) show that disturbance can markedly change these 

patterns. 

Allocation to fine roots was low in all sites, on average 10%±1.0%. This is consistent with 

reports from other sites in Asia (Hertel et al., 2009; Swamy et al., 2010; Kira et al., 2013), 

while allocation to fine roots is markedly higher in the Neo-tropical sites (global compilation 

by Malhi et al., 2011 and references therein). Allocation to fine roots was isometric, showing 

little variation across plots or along the disturbance gradient. Overall, we find no evidence of 

changes in relative investment in fine roots after logging, as might be expected if a flush of 

nutrients caused a decreased need for root foraging, or conversely if a surge in growth caused 

increased demand for nutrients. Results from old-growth forests in Amazonia also found little 

evidence for shifts in nutrient allocation towards roots in nutrient poor soils (Aragão et al., 

2009; Malhi et al., 2015), suggesting little support for nutrient acquisition optimization 

models for predicting fine root NPP. 

 

Higher woody growth rate in logged forest: Increase in NPP or shift in allocation? 

Logged tropical forests typically have higher woody growth rates than old-growth forests: 

50% higher stem growth rate and recruitment (Bischoff et al., 2005) and up to five times 

higher above-ground biomass production (Berry et al., 2010) has been reported. This could 

be due to either increased NPP or a shift in allocation in favour of woody production. Our 

analysis shows that in these forests in Borneo, the higher woody productivity is equally a 
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result of both processes. Hence, trees grow faster in logged forests both because they have 

higher NPP, and because the invest more of their NPP in stem growth (at the expense of leaf 

growth and defence) to compete for light. 

The increased NPP could be caused by an increase in total canopy photosynthesis/gross 

primary productivity (GPP), and/or by an increase in the carbon use efficiency (CUE; the 

ratio NPP/GPP) in more disturbed sites. Studies in Amazonia show that more dynamic and 

disturbed forests appear to have a higher CUE, reflecting increased plant prioritisation in 

favour of NPP rather than maintenance respiration (Malhi et al., 2015). In logged forests, the 

prioritisation in favour of rapid growth to reach canopy gaps is likely to lead to less 

proportional investment in maintenance and defence. It is also possible that the nutrient 

availability and/or mineralisation rates are higher as a result of the logging residue and 

changes in microclimate, which may boost leaf nutrient content and maximum photosynthesis 

rates. However, we find no consistent differences in soil nutrient concentrations in logged 

forests (Fig. S2). 

The observed shift in allocation in favour of woody production is also consistent with this 

functional shift. After logging, the priority of successful trees is to grow crowns to capture 

now abundant within-forest light, to shade competitors and to avoid being shaded themselves 

(Chen et al., 2013), which favours increased investment in stem growth. Allocation to leaves 

decreases when light availability increases – such as in logged forests that have gaps and 

recovering areas where the canopy is not yet fully closed (Poorter et al., 2012).  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The roles species turnover and pioneer species in logged forest NPP 

In this study, the proportion of pioneers in the logged plots was high (on average, 30% of 

basal area, 33% of stems). However, the comparison by species groups showed that all 

species, not only pioneers, grew significantly faster in logged forests than in old-growth 

forests, indicating that the reduced competition and higher availability of light were more 

important factors than species identity in explaining the difference in NPP between the forest 

types. Similarly, in a previous study in Malaysia, growth rate differences among tree species  

were shown to be much more strongly influenced by light interception index, crown 

illumination index and crown area than by wood density (King et al. 2015). 

 

Relative contributions of productivity, allocation, and structure effects in determining 

the net change in NPP between logged and old-growth forests  

The subplot-scale analysis showed that after reaching canopy closure, logged forests were 

considerably more productive than old-growth forests of similar basal area. Overall, the 

productivity effect increased the logged forest NPP by 31%. This is consistent with the well-

documented age-related decline in forest productivity in temperate and boreal forests, where 

NPP shows a rapid increase in young stands, peaks in intermediate age classes and a slowly 

declines towards old stands (e.g. Gower et al., 1996; Ryan et al., 1997; Pregitzer & 

Euskirchen, 2004). The selectively logged forests of this study are not, however, directly 

comparable to chronosequence studies, due to their high within-plot variability, patchy 

structure and the mixture of old trees and new recruits. In this study, the growth of individual 

trees was highest in the most heavily logged plots across all diameter classes, including the 

largest (and, potentially, oldest) trees. This indicates that, in addition to age, the altered 
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resource availability and growth strategies (investing in growth rather than in maintenance 

and defence) also contributed to the higher productivity. 

However, the higher productivity rates in logged forests in this study applied only if the 

structure effect were not taken into account. The structure effect was strongest in the areas of 

most sparse tree cover (basal area <10 m
2
 ha

-1
). These areas may either be logging gaps, such 

as roads and landing sites, which regenerate slowly (Pinard et al., 2000), or tree fall gaps 

resulting from persistently higher mortality rates due to past logging. In these gaps, the NPP 

of individual trees, and thus the NPP per unit basal area, may be high due to abundant light, 

low below-ground competition, and, typically, dominance of fast-growing pioneer species 

(Huang & Asner, 2010). However, such areas have low NPP per unit ground area because of 

the small number of trees — using a banking analogy, a small amount of capital earns only a 

small interest, even if the interest rate is high. The low NPP in the sparse tree cover areas 

largely counterbalanced the positive productivity effect, resulting in a similar average NPP in 

logged and old-growth forests at the 1-ha plot scale. The steep decline in NPP when basal 

area was <10 m
2
 ha

-1
 makes the area proportion of gaps one of the main factors affecting 

logged forest NPP. Based on high-resolution remote sensing data, Bryan et al. (2013) 

classified 32% of the logged forest area in Sabah as severely degraded. In our study, the area 

proportion of very sparse tree cover areas (basal area <10 m
2
 ha

-1
) in the logged plots was 

similar (37%), indicating that the results are likely to be representative across the wider 

landscape.  

Similar to total NPP, the component (canopy, woody and fine root) NPP in logged forest 

showed a positive productivity effect and negative structure effect. A similar productivity 

effect has been reported in other studies, where the magnitude of total NPP or GPP was the 

best predictor of the component NPP (Litton et al., 2007; Wolf et al., 2011). However, for the 

component NPP, potential allocation shifts must be taken into account to fully understand the 
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differences between logged and old-growth forest. For logged forest canopy NPP, the 

negative allocation effect was stronger than the positive productivity effect, while logged 

forest woody NPP was increased as much by the positive allocation effect as by the positive 

productivity effect. This demonstrates that allocation effects may be equally or more 

important than changes in overall productivity and stand structure in determining the 

magnitude of woody growth, or root or canopy production. 

The data presented here give new insights into how disturbance affects productivity and 

allocation. As logged forests become an increasingly prevalent part of the tropical forest 

biome, these shifts in productivity and allocation represent a profound human impact on the 

carbon cycling of the tropical biosphere, which is almost certainly larger than the impacts to 

date caused by atmospheric and climate change. 
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FIGURE LEGENDS 

Figure 1. Above-ground woody biomass (positive values) and coarse root biomass (negative 

values) of living stems in logged and old-growth plots. Error bars are ±1 SE. The white bars 

for the logged plots denote the pre-logging biomass in the 1970s, obtained from historical 

records, ±20% uncertainty (below-ground stock estimated assuming the same allocation as 

post-logging). 

Figure 2. a) Diameter distribution, b) above-ground woody biomass, and c) above-ground 

woody net primary productivity (AGW NPP) by stem diameter class in heavily logged (SAF-

01, SAF-02, SAF-05), moderately logged (SAF-03, SAF-04) and old-growth (DAN-04, 

DAN-05, MLA-01, MLA-02, LAM-06, LAM-07) plots. Mean values are shown; for 

individual plots, see Fig. S4. Inset in (c): mean annual diameter growth by 5 cm diameter 

classes in the three forest types. Classes with n≥5 stems are shown. 
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Figure 3. Canopy (a), woody (b), fine root (c) and total (d) net primary productivity (NPP) 

by plot and by forest type. Error bars are ±1 SE.   

Figure 4. Average woody NPP (±1 SE) per stem by species groups across 10 cm diameter 

classes. Classes with n≥5 are shown. Species were classified into shared (found both in 

logged and old-growth plots) and unique (found only in one forest type) species and into 

pioneers and non-pioneers (Table S1). Species groups: LSN – logged, shared, non-pioneer; 

LUN – logged, unique, non-pioneer; LUP – logged, unique, pioneer; OSN – old-growth, 

shared, non-pioneer; OUN – old-growth, unique, non-pioneer. 

Figure 5. Relative allocation (% of total) of net primary productivity (NPP) into canopy, 

woody and fine root NPP in individual plots and mean by forest type. 

Figure 6. a) Canopy, b) woody, c) fine root and d) total  net primary productivity (NPP) as a 

function of basal area of stems >10 cm diameter in logged and old-growth forest. The lines 

are cubic regression spline smoothers from general additive models with ± 95% confidence 

bands. The inward and outward rugs on the x axes denote the distribution of the basal area 

data in logged and old-growth forest, respectively. To see the figure with data points overlaid, 

see Fig. S5. 

Figure 7. The percentage change in net primary productivity (NPP) in logged forest, 

compared with old-growth forest. The net effect is partitioned to productivity effect, 

allocation effect and structure effect, the sum of which equals the net effect. Error bars are ±1 

SE. 
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Table 1. Characteristics of the study plots. The logged plots are ranked from most to least intensively logged. Mean of individual subplots ±1 

SE. Plot codes are as designated in the forestplots.net database 

Plot name and 

plot code 

Plot location Disturbance Soil type;  topography Basal area 

of trees >10 

cm DBH 

(m
2
 ha

-1
)  

Mean 

canopy 

gap 

fraction 

(%) 

Number of  

big trees 

(DBH >50 

cm ha
-1

) 

Pioneer tree 

species (% 

of basal 

area) 

B South 

(SAF-01) 

SAFE Project, Sabah  

(4.732°, 117.619°) 

Heavily 

logged  

Clay; mostly flat with a 

moderate slope on one edge 

6.81 

±1.00 

15.0 

±2.14 

1 28.1 

±4.3 

B North 

(SAF-02) 

SAFE Project, Sabah 

(4.739°, 117.617°) 

Heavily 

logged 

Clay; undulating 11.1 

±1.81 

13.4 

±1.51 

0 57.2 

±5.8 

Tower 

(SAF-05) 

SAFE Project, Sabah 

(4.716°, 117.609°) 

Heavily 

logged 

Clay; undulating 13.9 

±1.70 

12.2 

±2.07 

6 34.5 

±6.6 

E 

(SAF-03) 

SAFE Project, Sabah 

(4.691°, 117.588°) 

Moderately 

logged  

Clay; steep slope 19.6 

±1.88 

11.2 

±1.29 

10 21.5 

±5.0 

LF 

(SAF-04) 

SAFE Project, Sabah 

(4.765°, 117.700°) 

Moderately 

logged 

Partly sandy loam, partly 

clay; flat 

19.3 

±1.70 

12.8 

±1.03 

11 6.9 

±2.2 

Danum Carbon 1 

(DAN-04) 

Danum Valley Conservation 

Area, Sabah (4.951°, 117.796°) 

Old-growth Clay; steep slope 32.0 

±3.30 

10.5 

±1.00 

34 0.7 

±1.0 

Danum Carbon 2 

(DAN-05) 

Danum Valley Conservation 

Area, Sabah (4.953°, 117.793°) 

Old-growth Clay; flat 30.6 

±3.37 

11.3 

±1.5 

26 0.1 

±0.0 
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Belian 

(MLA-01) 

Maliau Basin Conservation 

Area, Sabah (4.747°, 116.970°) 

Old-growth Clay; undulating 41.6 

±3.59 

8.70 

±0.62 

47 0.2 

±0.3 

Seraya 

(MLA-02) 

Maliau Basin Conservation 

Area, Sabah (4.754°, 116.950°) 

Old-growth Clay; moderate slope 34.7 

±2.74 

7.04 

±0.55 

56 1.7 

±1.2 

Lambir Clay 

(LAM-07) 

Lambir Hills National Park, 

Sarawak (4.183°, 114.022°) 

Old-growth Clay; valley 31.8 

±3.85 

10.5 

±0.45 

35 0.1 

±0.3 

Lambir Sand 

(LAM-06) 

Lambir Hills National Park, 

Sarawak (4.188°, 114.019°) 

Old-growth Sandy loam; undulating 

with steep slopes 

41.1 

±2.45 

9.52 

±0.22 

46 0.3 

±1.0 
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