28 research outputs found

    Neocortical Interneurons: From Diversity, Strength

    Get PDF
    Interneurons in the neocortex of the brain are small, locally projecting inhibitory GABAergic cells with a broad array of anatomical and physiological properties. The diversity of interneurons is believed to be crucial for regulating myriad operations in the neocortex. Here, we describe current theories about how interneuron diversity may support distinct neocortical processes that underlie perception

    Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2

    Get PDF
    A major long-term goal of systems neuroscience is to identify the different roles of neural subtypes in brain circuit function. The ability to causally manipulate selective cell types is critical to meeting this goal. This protocol describes techniques for optically stimulating specific populations of excitatory neurons and inhibitory interneurons in vivo in combination with electrophysiology. Cell type selectivity is obtained using Cre-dependent expression of the light-activated channel Channelrhodopsin-2. We also describe approaches for minimizing optical interference with simultaneous extracellular and intracellular recording. These optogenetic techniques provide a spatially and temporally precise means of studying neural activity in the intact brain and allow a detailed examination of the effect of evoked activity on the surrounding local neural network. Injection of viral vectors requires 30–45 min, and in vivo electrophysiology with optogenetic stimulation requires 1–4 h.National Institutes of Health (U.S.)National Science Foundation (U.S.)Simons FoundationNational Institutes of Health (U.S.). Pioneer AwardNational Eye Institue (K99 Award)Knut and Alice Wallenberg Foundation (Postdoctoral Fellowship)Brain & Behavior Research Foundation. Young Investigator AwardThomas F. Peterse

    Driving fast-spiking cells induces gamma rhythm and controls sensory responses,”

    Get PDF
    Cortical gamma oscillations (20280 Hz) predict increases in focused attention, and failure in gamma regulation is a hallmark of neurological and psychiatric disease. Current theory predicts that gamma oscillations are generated by synchronous activity of fast-spiking inhibitory interneurons, with the resulting rhythmic inhibition producing neural ensemble synchrony by generating a narrow window for effective excitation. We causally tested these hypotheses in barrel cortex in vivo by targeting optogenetic manipulation selectively to fast-spiking interneurons. Here we show that light-driven activation of fast-spiking interneurons at varied frequencies (82200 Hz) selectively amplifies gamma oscillations. In contrast, pyramidal neuron activation amplifies only lower frequency oscillations, a cell-type-specific double dissociation. We found that the timing of a sensory input relative to a gamma cycle determined the amplitude and precision of evoked responses. Our data directly support the fast-spiking-gamma hypothesis and provide the first causal evidence that distinct network activity states can be induced in vivo by cell-type-specific activation. Brain states characterized by rhythmic electrophysiological activity have been studied intensively for more than 80 years Cell-type-specific expression of channelrhodopsin-2 To test directly the hypothesis that FS interneuron activity in an in vivo cortical circuit is sufficient to induce gamma oscillations, we used the light-sensitive bacteriorhodopsin Chlamydomonas reinhardtii channelrhodopsin-2 (ChR2), a cation channel activated by ,470 nm blue ligh

    DEVELOP EUROGOOS MARINE CLIMATE SERVICE WITH A SEAMLESS EARTH SYSTEM APPROACH

    Get PDF
    The ocean is an important pathway to a low-carbon and climate resilient society, e.g. in areas of blue carbon, green shipping, offshore renewable energy, aquaculture, fi shery and coastal adaptation. Currently, 26 EU member states have made their National Adaptation Strategy (NAS) and/or National Strategy Plan (NAP) which needs a strong climate information service. European Global Ocean Observing System (EuroGOOS) has a strategy to expand existing operational marine service to climate change in 2020-2030. As focal points of national marine, climate and/or weather services, ROOS (Regional Sea Operational Oceanographic System) members have extensive experiences in working with citizens, stakeholders and decision-makers at national, regional and municipality levels. This paper will review current marine climate service capacity in ROOS members, identify gaps in modelling, products and service, and propose a seamless earth system approach for developing EuroGOOS and ROOS marine climate service capacities.VersiĂłn del edito

    Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research

    Get PDF
    This paper is the outcome of a workshop held in Rome in November 2011 on the occasion of the 25th anniversary of the POEM (Physical Oceanography of the Eastern Mediterranean) program. In the workshop discussions, a number of unresolved issues were identified for the physical and biogeochemical properties of the Mediterranean Sea as a whole, i.e., comprising the Western and Eastern sub-basins. Over the successive two years, the related ideas were discussed among the group of scientists who participated in the workshop and who have contributed to the writing of this paper. Three major topics were identified, each of them being the object of a section divided into a number of different sub-sections, each addressing a specific physical, chemical or biological issue: 1. Assessment of basin-wide physical/biochemical properties, of their variability and interactions. 2. Relative importance of external forcing functions (wind stress, heat/moisture fluxes, forcing through straits) vs. internal variability. 3. Shelf/deep sea interactions and exchanges of physical/biogeochemical properties and how they affect the sub-basin circulation and property distribution. Furthermore, a number of unresolved scientific/methodological issues were also identified and are reported in each sub-section after a short discussion of the present knowledge. They represent the collegial consensus of the scientists contributing to the paper. Naturally, the unresolved issues presented here constitute the choice of the authors and therefore they may not be exhaustive and/or complete. The overall goal is to stimulate a broader interdisciplinary discussion among the scientists of the Mediterranean oceanographic community, leading to enhanced collaborative efforts and exciting future discoveries

    Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains

    Get PDF
    Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic inputs produce opposite results. This correlation shaping is due to a combination of enhanced high frequency input transfer and reduced firing rate gain in the high input rate state compared to the low state. Our study extends neural modulation from single neuron responses to population activity, a necessary step in understanding how the dynamics and processing of neural activity change across distinct brain states

    Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    Get PDF
    International audienceGallium oxide and more particularly ÎČ-Ga2O3 matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samples that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature

    Driving fast-spiking cells induces gamma rhythm and controls sensory responses,”

    No full text
    Cortical gamma oscillations (20280 Hz) predict increases in focused attention, and failure in gamma regulation is a hallmark of neurological and psychiatric disease. Current theory predicts that gamma oscillations are generated by synchronous activity of fast-spiking inhibitory interneurons, with the resulting rhythmic inhibition producing neural ensemble synchrony by generating a narrow window for effective excitation. We causally tested these hypotheses in barrel cortex in vivo by targeting optogenetic manipulation selectively to fast-spiking interneurons. Here we show that light-driven activation of fast-spiking interneurons at varied frequencies (82200 Hz) selectively amplifies gamma oscillations. In contrast, pyramidal neuron activation amplifies only lower frequency oscillations, a cell-type-specific double dissociation. We found that the timing of a sensory input relative to a gamma cycle determined the amplitude and precision of evoked responses. Our data directly support the fast-spiking-gamma hypothesis and provide the first causal evidence that distinct network activity states can be induced in vivo by cell-type-specific activation. Brain states characterized by rhythmic electrophysiological activity have been studied intensively for more than 80 years Cell-type-specific expression of channelrhodopsin-2 To test directly the hypothesis that FS interneuron activity in an in vivo cortical circuit is sufficient to induce gamma oscillations, we used the light-sensitive bacteriorhodopsin Chlamydomonas reinhardtii channelrhodopsin-2 (ChR2), a cation channel activated by ,470 nm blue ligh
    corecore