580 research outputs found

    Resurrecting Brinley Plots for a Novel Use: Meta-Analyses of Functional Brain Imaging Data in Older Adults

    Get PDF
    By plotting response times of young and older adults across a variety of tasks, Brinley spurred investigation and debate into the theory of general cognitive slowing. Though controversial, Brinley plots can assess between-task differences, the impact of increasing task demand, and the relationship between responses in two groups of subjects. Since a relationship exists between response times and the blood-oxygen level dependent (BOLD) signal of functional MRI (fMRI), Brinley's plotting method could be applied as a meta-analysis tool in fMRI studies of aging. Here, fledgling “Peiffer plots” are discussed for their potential impact on understanding general cognitive brain activity in aging. Preliminary results suggest that general cognitive slowing may be localized at the sensorimotor transformation in the precentral gyrus. Although this meta-analysis method is naturally used with imaging studies of aging, theoretically it may be applied to other study pairs (e.g., schizophrenic versus normal) or imaging datasets (e.g., PET)

    High Dimensional Classification of Structural MRI Alzheimer’s Disease Data Based on Large Scale Regularization

    Get PDF
    In this work we use a large scale regularization approach based on penalized logistic regression to automatically classify structural MRI images (sMRI) according to cognitive status. Its performance is illustrated using sMRI data from the Alzheimer Disease Neuroimaging Initiative (ADNI) clinical database. We downloaded sMRI data from 98 subjects (49 cognitive normal and 49 patients) matched by age and sex from the ADNI website. Images were segmented and normalized using SPM8 and ANTS software packages. Classification was performed using GLMNET library implementation of penalized logistic regression based on coordinate-wise descent optimization techniques. To avoid optimistic estimates classification accuracy, sensitivity, and specificity were determined based on a combination of three-way split of the data with nested 10-fold cross-validations. One of the main features of this approach is that classification is performed based on large scale regularization. The methodology presented here was highly accurate, sensitive, and specific when automatically classifying sMRI images of cognitive normal subjects and Alzheimer disease (AD) patients. Higher levels of accuracy, sensitivity, and specificity were achieved for gray matter (GM) volume maps (85.7, 82.9, and 90%, respectively) compared to white matter volume maps (81.1, 80.6, and 82.5%, respectively). We found that GM and white matter tissues carry useful information for discriminating patients from cognitive normal subjects using sMRI brain data. Although we have demonstrated the efficacy of this voxel-wise classification method in discriminating cognitive normal subjects from AD patients, in principle it could be applied to any clinical population

    Increased ventral striatal volume in college-aged binge drinkers

    Get PDF
    BACKGROUND Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. METHOD T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. RESULTS Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. CONCLUSIONS Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor

    Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum

    Get PDF
    Sleep is important for abstraction of the underlying principles (or gist) which bind together conceptually related stimuli, but little is known about the neural correlates of this process. Here, we investigate this issue using overnight sleep monitoring and functional magnetic resonance imaging (fMRI). Participants were exposed to a statistically structured sequence of auditory tones then tested immediately for recognition of short sequences which conformed to the learned statistical pattern. Subsequently, after consolidation over either 30min or 24h, they performed a delayed test session in which brain activity was monitored with fMRI. Behaviorally, there was greater improvement across 24h than across 30min, and this was predicted by the amount of slow wave sleep (SWS) obtained. Functionally, we observed weaker parahippocampal responses and stronger striatal responses after sleep. Like the behavioral result, these differences in functional response were predicted by the amount of SWS obtained. Furthermore, connectivity between striatum and parahippocampus was weaker after sleep, whereas connectivity between putamen and planum temporale was stronger. Taken together, these findings suggest that abstraction is associated with a gradual shift from the hippocampal to the striatal memory system and that this may be mediated by SWS

    Rapid-onset dystonia-parkinsonism associated with the I758S mutation of the ATP1A3 gene: a neuropathologic and neuroanatomical study of four siblings

    Get PDF
    Rapid-onset dystonia-parkinsonism (RDP) is a movement disorder associated with mutations in the ATP1A3 gene. Signs and symptoms of RDP commonly occur in adolescence or early adulthood and can be triggered by physical or psychological stress. Mutations in ATP1A3 are also associated with alternating hemiplegia of childhood (AHC). The neuropathologic substrate of these conditions is unknown. The central nervous system of four siblings, three affected by RDP and one asymptomatic, all carrying the I758S mutation in the ATP1A3 gene, was analyzed. This neuropathologic study is the first carried out in ATP1A3 mutation carriers, whether affected by RDP or AHC. Symptoms began in the third decade of life for two subjects and in the fifth for another. The present investigation aimed at identifying, in mutation carriers, anatomical areas potentially affected and contributing to RDP pathogenesis. Comorbid conditions, including cerebrovascular disease and Alzheimer disease, were evident in all subjects. We evaluated areas that may be relevant to RDP separately from those affected by the comorbid conditions. Anatomical areas identified as potential targets of I758S mutation were globus pallidus, subthalamic nucleus, red nucleus, inferior olivary nucleus, cerebellar Purkinje and granule cell layers, and dentate nucleus. Involvement of subcortical white matter tracts was also evident. Furthermore, in the spinal cord, a loss of dorsal column fibers was noted. This study has identified RDP-associated pathology in neuronal populations, which are part of complex motor and sensory loops. Their involvement would cause an interruption of cerebral and cerebellar connections which are essential for maintenance of motor control. Electronic supplementary material The online version of this article (doi:10.1007/s00401-014-1279-x) contains supplementary material, which is available to authorized users

    Limbic Justice—Amygdala Involvement in Immediate Rejection in the Ultimatum Game

    Get PDF
    Imaging studies have revealed a putative neural account of emotional bias in decision making. However, it has been difficult in previous studies to identify the causal role of the different sub-regions involved in decision making. The Ultimatum Game (UG) is a game to study the punishment of norm-violating behavior. In a previous influential paper on UG it was suggested that frontal insular cortex has a pivotal role in the rejection response. This view has not been reconciled with a vast literature that attributes a crucial role in emotional decision making to a subcortical structure (i.e., amygdala). In this study we propose an anatomy-informed model that may join these views. We also present a design that detects the functional anatomical response to unfair proposals in a subcortical network that mediates rapid reactive responses. We used a functional MRI paradigm to study the early components of decision making and challenged our paradigm with the introduction of a pharmacological intervention to perturb the elicited behavioral and neural response. Benzodiazepine treatment decreased the rejection rate (from 37.6% to 19.0%) concomitantly with a diminished amygdala response to unfair proposals, and this in spite of an unchanged feeling of unfairness and unchanged insular response. In the control group, rejection was directly linked to an increase in amygdala activity. These results allow a functional anatomical detection of the early neural components of rejection associated with the initial reactive emotional response. Thus, the act of immediate rejection seems to be mediated by the limbic system and is not solely driven by cortical processes, as previously suggested. Our results also prompt an ethical discussion as we demonstrated that a commonly used drug influences core functions in the human brain that underlie individual autonomy and economic decision making

    Montreal Cognitive Assessment and Modified Mini Mental State Examination in African Americans

    Get PDF
    Background. Sparse data limit the interpretation of Montreal Cognitive Assessment (MoCA) scores, particularly in minority populations. Additionally, there are no published data on how MoCA scores compare to the widely used Modified Mini Mental State Examination (3MSE). We provide performance data on the MoCA in a large cohort of African Americans and compare 3MSE and MoCA scores, providing a "crosswalk" for interpreting scores. Methods. Five hundred and thirty African Americans with type 2 diabetes were enrolled in African American-Diabetes Heart Study-MIND, a cross-sectional study of cognition and structural and functional brain imaging. After excluding participants with possible cognitive impairment ( = 115), mean (SD) MoCA and 3MSE scores are presented stratified by age and education. Results. Participant mean age was 58.2 years (range: 35-83); 61% were female; and 64.9% had >12 years of education. Mean (SD) 3MSE and MoCA scores were 86.9 (8.2) and 19.8 (3.8), respectively. 93.5% of the cohort had a "positive" screen on the MoCA, scoring <26 (education-adjusted), compared with 47.5% on the 3MSE (cut-point < 88). A 3MSE score of 88 corresponded to a MoCA score of 20 in this population. Conclusion. The present data suggest the need for caution when applying proposed MoCA cutoffs to African Americans

    Multi-modal representation of effector modality in frontal cortex during rule switching.

    Get PDF
    We report a functional magnetic resonance imaging (fMRI) study which investigated whether brain areas involved in updating task rules within the frontal lobe of the cerebral cortex show activity related to the modality of motor response used in the task. Participants performed a rule switching task using different effector modalities. In some blocks participants responded with left/right button presses, whilst in other blocks left/right saccades were required. The color of a Cue event instructed a left or right response based upon a rule, followed by a Feedback which indicated whether the rule was to stay the same or "Flip" on the next trial. The findings revealed variation in the locus of activity within the ventrolateral frontal cortex dependent upon effector modality. Other frontal areas showed no significant difference in activity between response epochs but changed their pattern of connectivity with posterior cortical areas dependent upon response. Multivariate analysis revealed that the pattern of activity evoked by Flip rule Feedbacks within an apparently supra modal frontal region (dorsolateral frontal cortex) discriminated between response epochs. The results are consistent with the existence of multi-modal representations of stimulus-response (SR) rules within the frontal cerebral cortex
    corecore