23 research outputs found

    Proposed Role for COUP-TFII in Regulating Fetal Leydig Cell Steroidogenesis, Perturbation of Which Leads to Masculinization Disorders in Rodents

    Get PDF
    Reproductive disorders that are common/increasing in prevalence in human males may arise because of deficient androgen production/action during a fetal ‘masculinization programming window’. We identify a potentially important role for Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII) in Leydig cell (LC) steroidogenesis that may partly explain this. In rats, fetal LC size and intratesticular testosterone (ITT) increased ∼3-fold between e15.5-e21.5 which associated with a progressive decrease in the percentage of LC expressing COUP-TFII. Exposure of fetuses to dibutyl phthalate (DBP), which induces masculinization disorders, dose-dependently prevented the age-related decrease in LC COUP-TFII expression and the normal increases in LC size and ITT. We show that nuclear COUP-TFII expression in fetal rat LC relates inversely to LC expression of steroidogenic factor-1 (SF-1)-dependent genes (StAR, Cyp11a1, Cyp17a1) with overlapping binding sites for SF-1 and COUP-TFII in their promoter regions, but does not affect an SF-1 dependent LC gene (3β-HSD) without overlapping sites. We also show that once COUP-TFII expression in LC has switched off, it is re-induced by DBP exposure, coincident with suppression of ITT. Furthermore, other treatments that reduce fetal ITT in rats (dexamethasone, diethylstilbestrol (DES)) also maintain/induce LC nuclear expression of COUP-TFII. In contrast to rats, in mice DBP neither causes persistence of fetal LC COUP-TFII nor reduces ITT, whereas DES-exposure of mice maintains COUP-TFII expression in fetal LC and decreases ITT, as in rats. These findings suggest that lifting of repression by COUP-TFII may be an important mechanism that promotes increased testosterone production by fetal LC to drive masculinization. As we also show an age-related decline in expression of COUP-TFII in human fetal LC, this mechanism may also be functional in humans, and its susceptibility to disruption by environmental chemicals, stress and pregnancy hormones could explain the origin of some human male reproductive disorders

    Metformin Blocks Melanoma Invasion and Metastasis Development in AMPK/p53-Dependent Manner

    No full text
    International audienceMetformin was reported to inhibit the proliferation of many cancer cells, including melanoma cells. In this report, we investigated the effect of metformin on melanoma invasion and metastasis development. Using different in vitro approaches, we found that metformin inhibits cell invasion without affecting cell migration and independently of antiproliferation action. This inhibition is correlated with modulation of expression of proteins involved in epithelial-mesenchymal transition such as Slug, Snail, SPARC, fibronectin, and N-cadherin and with inhibition of MMP-2 and MMP-9 activation. Furthermore, our data indicate that this process is dependent on activation of AMPK and tumor suppressor protein p53. Finally, we showed that metformin inhibits melanoma metastasis development in mice using extravasation and metastasis models. The presented data reinforce the fact that metformin might be a good candidate for clinical trial in melanoma treatment
    corecore