385 research outputs found

    Formation of somatosensory detour circuits mediates functional recovery following dorsal column injury

    Get PDF
    Anatomically incomplete spinal cord injuries can be followed by functional recovery mediated, in part, by the formation of intraspinal detour circuits. Here, we show that adult mice recover tactile and proprioceptive function following a unilateral dorsal column lesion. We therefore investigated the basis of this recovery and focused on the plasticity of the dorsal column-medial lemniscus pathway. We show that ascending dorsal root ganglion (DRG) axons branch in the spinal grey matter and substantially increase the number of these collaterals following injury. These sensory fibers exhibit synapsin-positive varicosities, indicating their integration into spinal networks. Using a monosynaptic circuit tracing with rabies viruses injected into the cuneate nucleus, we show the presence of spinal cord neurons that provide a detour pathway to the original target area of DRG axons. Notably the number of contacts between DRG collaterals and those spinal neurons increases by more than 300% after injury. We then characterized these interneurons and showed that the lesion triggers a remodeling of the connectivity pattern. Finally, using re-lesion experiments after initial remodeling of connections, we show that these detour circuits are responsible for the recovery of tactile and proprioceptive function. Taken together our study reveals that detour circuits represent a common blueprint for axonal rewiring after injury

    Water Dynamics at Protein Interfaces: Ultrafast Optical Kerr Effect Study

    Get PDF
    The behavior of water molecules surrounding a protein can have an important bearing on its structure and function. Consequently, a great deal of attention has been focused on changes in the relaxation dynamics of water when it is located at the protein surface. Here we use the ultrafast optical Kerr effect to study the H-bond structure and dynamics of aqueous solutions of proteins. Measurements are made for three proteins as a function of concentration. We find that the water dynamics in the first solvation layer of the proteins are slowed by up to a factor of 8 in comparison to those in bulk water. The most marked slowdown was observed for the most hydrophilic protein studied, bovine serum albumin, whereas the most hydrophobic protein, trypsin, had a slightly smaller effect. The terahertz Raman spectra of these protein solutions resemble those of pure water up to 5 wt % of protein, above which a new feature appears at 80 cm–1, which is assigned to a bending of the protein amide chain

    Biobanks in Europe: Prospects for Harmonisation and Networking

    Get PDF
    Biobanks (i.e. the organised collections consisting of biological samples and associated data, have gained great significance for research and personalised medicine) are increasingly recognised as a crucial infrastructure for research. However, at the same time the widely varied practices in biobanking regarding for example collection, storage and consent procedures may also pose a barrier to cross-border research and collaboration by limiting access to samples and data. In this context, a recent study indicates that the limited sharing and linkage of samples is a key barrier for research, such as pharmacogenetics. Wide variation is observed in the implementation of relevant existing regulation, which may add further burden to harnessing the public health benefit of these collections. Therefore, it has been suggested that there is a strong need for a harmonised approach on biobanking practices and improved networking of existing and new collections. This Report shows information on the extent of biobanking in Europe, collected through a survey of existing European biobanks regarding both technical aspects (e.g. storage conditions) and aspects of governance and ethics (e.g. sample and data sharing, consent procedures, collaborations etc.). In total, 126 biobanks from 23 countries in Europe were surveyed. Significant lack of harmonisation has been found, especially in the legal aspects (e.g. data protection, consent). This may be partly attributed to the varied interpretation and implementation of EC directives covering aspects of biobanking by national authorities. One of the main complications is that, although the field of data protection is harmonised through the EC directive on data protection, the collection, storage, and sharing of samples is not. Furthermore, in countries that have introduced special biobanks acts it is not always clear where the borderline lies between the scope of these acts and that of the Directive. Indeed, according to the survey, biobanks within the same country reported different practices, suggesting that the problems of harmonization might be higher than expected and claimed. Not only are there different national laws, but apparently within EU member states biobanks do not implement homogenous practices on privacy and data protection issues. Desk research and expert interviews were done to complete the picture presented by the survey. Experts widely recognised the need to improve collaboration and networking among the numerous existing biobanks, as well as new initiatives in Europe (and world-wide). Efficient organisation of these resources through the development, for example, of an infrastructure would potentially facilitate financial sustainability and greatly contribute to the rapid progress of research and development of better diagnostic and therapeutic approaches. The most favoured model involved the development of a virtual biobank that would allow networking of biobanks across different countries and centralisation of data rather than samples. However, several organisational challenges (wide variation in biospecimen collection, storage techniques, data comparability, etc.) may hamper such an effort. The lack of uniform regulatory and ethical requirements and/or practices may pose an additional barrier. The European Commission has already recognised the importance of international biobank projects and many of them have been funded and established in the context of the EU Framework Programmes. To help promote networking of biobanks and thus maximise public health benefits, at least some degree of harmonisation must be achieved. Whether this should be achieved solely at the level of legal/regulatory requirements and practices and/or by technical standardisation requires further investigation. Experts suggested the establishment of an international (rathen than just a European) umbrella (or network) organization, which would establish common operating procedures.JRC.DDG.J.2-The economics of climate change, energy and transpor

    Structure and dynamics in protic ionic liquids: a combined optical Kerr-effect and dielectric relaxation spectroscopy study

    Get PDF
    The structure and dynamics of ionic liquids (ILs) are unusual due to the strong interactions between the ions and counter ions. These microscopic properties determine the bulk transport properties critical to applications of ILs such as advanced fuel cells. The terahertz dynamics and slower relaxations of simple alkylammonium nitrate protic ionic liquids (PILs) are here studied using femtosecond optical Kerr-effect spectroscopy, dielectric relaxation spectroscopy, and terahertz time-domain spectroscopy. The observed dynamics give insight into more general liquid behaviour while comparison with glass-forming liquids reveals an underlying power-law decay and relaxation rates suggest supramolecular structure and nanoscale segregation

    The dynamic crossover in water does not require bulk water

    Get PDF
    Many of the anomalous properties of water may be explained by invoking a second critical point that terminates the coexistence line between the low- and high-density amorphous states in the liquid. Direct experimental evidence of this point, and the associated polyamorphic liquid–liquid transition, is elusive as it is necessary for liquid water to be cooled below its homogeneous-nucleation temperature. To avoid crystallization, water in the eutectic LiCl solution has been studied but then it is generally considered that “bulk” water cannot be present. However, recent computational and experimental studies observe cooperative hydration in which case it is possible that sufficient hydrogen-bonded water is present for the essential characteristics of water to be preserved. For femtosecond optical Kerr-effect and nuclear magnetic resonance measurements, we observe in each case a fractional Stokes–Einstein relation with evidence of the dynamic crossover appearing near 220 K and 250 K respectively. Spectra obtained in the glass state also confirm the complex nature of the hydrogen-bonding modes reported for neat room-temperature water and support predictions of anomalous diffusion due to “worm-hole” structure

    Disaccharide topology induces slow down in local water dynamics

    Get PDF
    Molecular level insight into water structure and structural dynamics near proteins, lipids and nucleic acids is critical to the quantitative understanding of many biophysical processes. Un- fortunately, understanding hydration and hydration dynamics around such large molecules is challenging because of the necessity of deconvoluting the effects of topography and chemical heterogeneity. Here we study, via classical all atom simulation, water structure and structural dynamics around two biologically relevant solutes large enough to have significant chemical and topological heterogeneity but small enough to be computationally tractable: the disaccharides Kojibiose and Trehalose. We find both molecules to be strongly amphiphilic (as quantified from normalized local density fluctuations) and to induce nonuniform local slowdown in water translational and rotational motion. Detailed analysis of the rotational slowdown shows that while the rotational mechanism is similar to that previously identified in other aqueous systems by Laage, Hynes and coworkers, two novel characteristics are observed: broadening of the transition state during hydrogen bond exchange (water rotation) and a subpopulation of water for which rotation is slowed because of hindered access of the new accepting water molecule to the transition state. Both of these characteristics are expected to be generic features of water rotation around larger biomolecules and, taken together, emphasize the difficulty in transferring insight into water rotation around small molecules to much larger amphiphilic solutes.This work is part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM)” which is financially supported by the “Nederlandse organisatie voor Wetenschap- pelijk Onderzoek (NWO)”. Further financial support was provided by a Marie Curie Incoming International Fellowship (RKC). We gratefully acknowledge SARA, the Dutch center for high- performance computing, for computational time and Huib Bakker and Daan Frenkel for useful critical reviews on an earlier version of this work. We thank two anonymous reviewers for their excellent work, especially for bringing to our attention calculations done on the transition state geometry of dimers and the overstructuring of the O-O radial distribution function of SPC/E water

    An extended window of opportunity for G-CSF treatment in cerebral ischemia

    Get PDF
    BACKGROUND: Granulocyte-colony stimulating factor (G-CSF) is known as a powerful regulator of white blood cell proliferation and differentiation in mammals. We, and others, have shown that G-CSF is effective in treating cerebral ischemia in rodents, both relating to infarct size as well as functional recovery. G-CSF and its receptor are expressed by neurons, and G-CSF regulates apoptosis and neurogenesis, providing a rational basis for its beneficial short- and long-term actions in ischemia. In addition, G-CSF may contribute to re-endothelialisation and arteriogenesis in the vasculature of the ischemic penumbra. In addition to these trophic effects, G-CSF is a potent neuroprotective factor reliably reducing infarct size in different stroke models. RESULTS: Here, we have further delayed treatment and studied effects of G-CSF on infarct volume in the middle cerebral artery occlusion (MCAO) model and functional outcome in the cortical photothrombotic model. In the MCAO model, we applied a single dose of 60 μg/kg bodyweight G-CSF in rats 4 h after onset of ischemia. Infarct volume was determined 24 h after onset of ischemia. In the rat photothrombotic model, we applied 10 μg/kg bodyweight G-CSF daily for a period of 10 days starting either 24 or 72 h after induction of ischemia. G-CSF both decreased acute infarct volume in the MCAO model, and improved recovery in the photothrombotic model at delayed timepoints. CONCLUSION: These data further strengthen G-CSF's profile as a unique candidate stroke drug, and provide an experimental basis for application of G-CSF in the post-stroke recovery phase

    Granulocyte-Colony Stimulating Factor (G-CSF) Improves Motor Recovery in the Rat Impactor Model for Spinal Cord Injury

    Get PDF
    Granulocyte-colony stimulating factor (G-CSF) improves outcome after experimental SCI by counteracting apoptosis, and enhancing connectivity in the injured spinal cord. Previously we have employed the mouse hemisection SCI model and studied motor function after subcutaneous or transgenic delivery of the protein. To further broaden confidence in animal efficacy data we sought to determine efficacy in a different model and a different species. Here we investigated the effects of G-CSF in Wistar rats using the New York University Impactor. In this model, corroborating our previous data, rats treated subcutaneously with G-CSF over 2 weeks show significant improvement of motor function

    Granulocyte-Colony Stimulating Factor (G-CSF) in Stroke Patients with Concomitant Vascular Disease—A Randomized Controlled Trial

    Get PDF
    G-CSF has been shown in animal models of stroke to promote functional and structural regeneration of the central nervous system. It thus might present a therapy to promote recovery in the chronic stage after stroke.Here, we assessed the safety and tolerability of G-CSF in chronic stroke patients with concomitant vascular disease, and explored efficacy data. 41 patients were studied in a double-blind, randomized approach to either receive 10 days of G-CSF (10 µg/kg body weight/day), or placebo. Main inclusion criteria were an ischemic infarct >4 months prior to inclusion, and white matter hyperintensities on MRI. Primary endpoint was number of adverse events. We also explored changes in hand motor function for activities of daily living, motor and verbal learning, and finger tapping speed, over the course of the study.Adverse events (AEs) were more frequent in the G-CSF group, but were generally graded mild or moderate and from the known side-effect spectrum of G-CSF. Leukocyte count rose after day 2 of G-CSF dosing, reached a maximum on day 8 (mean 42/nl), and returned to baseline 1 week after treatment cessation. No significant effect of treatment was detected for the primary efficacy endpoint, the test of hand motor function.These results demonstrate the feasibility, safety and reasonable tolerability of subcutaneous G-CSF in chronic stroke patients. This study thus provides the basis to explore the efficacy of G-CSF in improving chronic stroke-related deficits.ClinicalTrials.gov NCT00298597

    Noncovalent Interactions of Hydrated DNA and RNA Mapped by 2D-IR Spectroscopy

    Full text link
    Biomolecules couple to their aqueous environment through a variety of noncovalent interactions. Local structures at the surface of DNA and RNA are frequently determined by hydrogen bonds with water molecules, complemented by non-specific electrostatic and many-body interactions. Structural fluctuations of the water shell result in fluctuating Coulomb forces on polar and/or ionic groups of the biomolecular structure and in a breaking and reformation of hydrogen bonds. Two-dimensional infrared (2D-IR) spectroscopy of vibrational modes of DNA and RNA gives insight into local hydration geometries, elementary molecular dynamics, and the mechanisms behind them. In this chapter, recent results from 2D-IR spectroscopy of native and artificial DNA and RNA are presented, together with theoretical calculations of molecular couplings and molecular dynamics simulations. Backbone vibrations of DNA and RNA are established as sensitive noninvasive probes of the complex behavior of hydrated helices. The results reveal the femtosecond fluctuation dynamics of the water shell, the short-range character of Coulomb interactions, and the strength and fluctuation amplitudes of interfacial electric fields.Comment: To appear as Chapter 8 of Springer Series in Optical Sciences: Coherent Multidimensional Spectroscopy -- Editors: Cho, Minhaeng (Ed.), 201
    corecore