61 research outputs found

    Experimental antibacterial activity of selective cyclooxygenase antagonist

    Get PDF
    Background: From the history of the development of pharmaceutical compounds it is evident that any drug may have the possibility of possessing diverse functions and thus may have useful activity in completely different fields of medicine and different studies showed that newer antimicrobials have revealed antimicrobial action involved in the management of diseases of non-infectious etiology. This study was done to determine in vitro antibacterial activity of selected selective cyclooxygenase-2 inhibitor.Methods: Twenty two strains of gram positive and gram negative bacteria, which were isolated from skin and urinary tract infected patient. These bacteria were being cultured on specific optimal growth media. The antibacterial activity of selective COX-2 (meloxicam, celecoxib, valdecoxib and nimesulide). Inhibitors determined by measuring zone of inhibition and minimal inhibitory concentration (MIC).Results: Results showed that MIC of celecoxib and meloxicam in µg/ml was ranged from 5-80µg/ml on selected bacteria compared with negative control distilled water (D.W) ,valdecoxib was 80-160µg/ml, while and nimesulide was ranged from 5-40 µg/ml .All the selected bacteria were showed sensitivity for all coxib used in this experimental study except Pseudomonas aeruginosa which showed resistant to meloxicam and valdecoxib, Klebsiella pneumoniae resist to nimesulide while Staphylococcus aureus was resist to valdecoxib. The smaller zone of inhibition showed by valdecoxib and celecoxib which was 3mm against Klebsiella pneumoniae, while the larger zone of inhibition showed by nimesulide which was 26mm against Escherichia coli.Conclusions: In conclusion selective cyclooxygenase (cox-2) inhibitor possesses antibacterial activity this is especially for nimesulide and little by valdecoxib. Escherichia coli are sensitive bacteria to all coxib. Consequently; coxib may be regarded as anti-inflammatory and antibacterial agent especially for urinary tract infection where Escherichia coli are the major causative organism

    The Potential Role of Renin Angiotensin System (RAS) and Dipeptidyl Peptidase-4 (DPP-4) in COVID-19: Navigating the Uncharted

    Get PDF
    Novel coronavirus (COVID-19) led to infected pneumonia and acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI). The entry-point receptor for COVID-19 is angiotensin-converting enzyme 2 (ACE2) at lung, and dipeptidyl peptidase-4 (DPP-4) is a receptor for Middle East respiratory syndrome coronavirus (MERS-CoV). There is 80% similarity between MERS-CoV and COVID-19. This study was planned to review the potential link between the incidence and severity of COVID-19 regarding the modulation of DPP-4 and ACE2 by DPP-4 and renin angiotensin system (RAS). In COVID-19, SARS-CoV2 binds ACE2 which is highly expressed by the epithelial cells of the blood vessel, intestine, and lung. However, pulmonary ACE2 seems to be a protective defense pathway during ARDS. DPP-4 is not concerned with the entry of COVID-19 but mediates the inflammatory reactions and cytokine storm that induced ARDS and AKI by COVID-19. The interaction between DPP4i and RAS inhibitors seem to augment the expression of AT2 receptor and ACE2 which are under extensive researches to find the pathophysiological pathway of COVID-19 infection. This beneficial interaction between DPP4i and RAS shed light for possible attenuation of COVID-19-induced ARDS and AKI mainly in critically ill patients with systemic hypertension

    MFG-E8 Regulates the Immunogenic Potential of Dendritic Cells Primed with Necrotic Cell-Mediated Inflammatory Signals

    Get PDF
    Dendritic cells (DC) manipulate tissue homeostasis by recognizing dying cells and controlling immune functions. However, the precise mechanisms by which DC recognize different types of dying cells and devise distinct immunologic consequences remain largely obscure. Herein, we demonstrate that Milk-fat globule-EGF VIII (MFG-E8) is a critical mediator controlling DC immunogenicity in inflammatory microenvironments. MFG-E8 restrains DC-mediated uptake and recognition of necrotic cells. The MFG-E8-mediated suppression of necrotic cell uptake by DC resulted in the decreased proinflammatory cytokines production and activated signal components such as STAT3 and A20, which are critical to maintain tolerogenic properties of DC. Furthermore, the DC-derived MFG-E8 negatively regulates the cross-priming and effector functions of antigen-specific T cells upon recognition of necrotic cells. MFG-E8 deficiency enhances an ability of necrotic cell-primed DC to stimulate antitumor immune responses against established tumors. Our findings define what we believe to a novel mechanism whereby MFG-E8 regulates the immunogenicity of DC by modulating the modes of recognition of dying cells. Manipulating MFG-E8 levels in DC may serve as a useful strategy for controlling inflammatory microenvironments caused by various pathological conditions including cancer and autoimmunity

    Activation of TORC1 transcriptional coactivator through MEKK1-induced phosphorylation

    Get PDF
    CREB is a prototypic bZIP transcription factor and a master regulator of glucose metabolism, synaptic plasticity, cell growth, apoptosis, and tumorigenesis. Transducers of regulated CREB activity (TORCs) are essential transcriptional coactivators of CREB and an important point of regulation on which various signals converge. In this study, we report on the activation of TORC1 through MEKK1-mediated phosphorylation. MEKK1 potently activated TORC1, and this activation was independent of downstream effectors MEK1/MEK2, ERK2, JNK, p38, protein kinase A, and calcineurin. MEKK1 induced phosphorylation of TORC1 both in vivo and in vitro. Expression of the catalytic domain of MEKK1 alone in cultured mammalian cells sufficiently caused phosphorylation and subsequent activation of TORC1. MEKK1 physically interacted with TORC1 and stimulated its nuclear translocation. An activation domain responsive to MEKK1 stimulation was mapped to amino acids 431-650 of TORC1. As a physiological activator of CREB, interleukin 1α triggered MEKK1-dependent phosphorylation of TORC1 and its consequent recruitment to the cAMP response elements in the interleukin 8 promoter. Taken together, our findings suggest a new mechanism for regulated activation of TORC1 transcriptional coactivator and CREB signaling. © 2008 by The American Society for Cell Biology.published_or_final_versio

    Immune-neuroendocrine and metabolic disorders in human and experimental T. cruzi infection: New clues for understanding Chagas disease pathology

    Get PDF
    Studies in mice undergoing acute Trypanosoma cruzi infection and patients with Chagas disease, led to identify several immune-neuroendocrine disturbances and metabolic disorders. Here, we review relevant findings concerning such abnormalities and discuss their possible influence on disease physiopathology.Fil: González, Florencia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: Villar, Silvina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: Pacini, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: Bottasso, Oscar Adelmo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: Perez, Ana Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; Argentin

    Levothyroxine improves Paraoxonase (PON-1) serum levels in patients with primary hypothyroidism: Case–control study

    No full text
    Primary hypothyroidism is associated with oxidative stress and insufficient antioxidant capacity. This study was conducted to evaluate the effects of levothyroxine replacement therapy on paraoxonase 1 (PON-1) serum levels in a patients with primary hypothyroidism. Thirty-one patients with primary hypothyroidism compared to 20 healthy controls were recruited from. A venous blood sample were taken after an overnight fasting for biochemical parameters, before and after starting levothyroxine therapy (100 μ g/day) for 3 months duration. The biochemical variables were PON-1 serum levels, lipid profiles, triiodothyronine (T3), thyroxin (T4), and thyroid stimulating hormone (TSH) serum levels. Levothyroxine replacement therapy leads to a significant amelioration of thyroid functions, lipid profile, cardiometabolic measures P < 0.05 in patients with primary hypothyroidism. Levothyroxine leads to significant elevation in PON-1 serum levels from 188.42 ± 19.81 (U/mL) to 361.23 ± 33.62 (U/mL) P < 0.0001. This study concluded that levothyroxine replacement therapy significantly increases PON-1 serum levels in patients with primary hypothyroidism and attenuating hypothyroidism-induced oxidative stress

    Sulfonylurea and neuroprotection: The bright side of the moon

    No full text
    Sulfonylurea (SUR) agents are the second and most used oral hypoglycemic drugs after metformin and they still as an imperative tool for most favorable of glucose control. SURs are used mainly in the management of Type 2 diabetes mellitus since; they are effective in the glycemic control and reduction of microvascular complications. First-generation SUR represents 3% of used oral hypoglycemic agents while second and third generations are used in about 25% in patients with Type 2 diabetes mellitus. Upregulation of SUR1 receptor has been observed after stroke and traumatic brain injury, therefore, SUR such as glibenclamide inhibits brain edema and astrocyte swelling following brain insults. SUR drugs mainly glibenclamide is effective at a low dose in the management of cerebral stroke and could be a contestant with corticosteroid in controlling brain edema
    • …
    corecore