23 research outputs found

    Air pollution and decreased bone mineral density among Women's Health Initiative participants

    Get PDF
    Background: Osteoporosis heavily affects postmenopausal women and is influenced by environmental exposures. Determining the impact of criteria air pollutants and their mixtures on bone mineral density (BMD) in postmenopausal women is an urgent priority. Methods: We conducted a prospective observational study using data from the ethnically diverse Women's Health Initiative Study (WHI) (enrollment, September 1994–December 1998; data analysis, January 2020 to August 2022). We used log-normal, ordinary kriging to estimate daily mean concentrations of PM10, NO, NO2, and SO2 at participants' geocoded addresses (1-, 3-, and 5-year averages before BMD assessments). We measured whole-body, total hip, femoral neck, and lumbar spine BMD at enrollment and follow-up (Y1, Y3, Y6) via dual-energy X-ray absorptiometry. We estimated associations using multivariable linear and linear mixed-effects models and mixture effects using Bayesian kernel machine regression (BKMR) models. Findings: In cross-sectional and longitudinal analyses, mean PM10, NO, NO2, and SO2 averaged over 1, 3, and 5 years before the visit were negatively associated with whole-body, total hip, femoral neck, and lumbar spine BMD. For example, lumbar spine BMD decreased 0.026 (95% CI: 0.016, 0.036) g/cm2/year per a 10% increase in 3-year mean NO2 concentration. BKMR suggested that nitrogen oxides exposure was inversely associated with whole-body and lumbar spine BMD. Interpretation: In this cohort study, higher levels of air pollutants were associated with bone damage, particularly on lumbar spine, among postmenopausal women. These findings highlight nitrogen oxides exposure as a leading contributor to bone loss in postmenopausal women, expanding previous findings of air pollution-related bone damage. Funding: US National Institutes of Health

    Maternal haemoglobin levels in pregnancy and child DNA methylation : a study in the pregnancy and childhood epigenetics consortium

    Get PDF
    Altered maternal haemoglobin levels during pregnancy are associated with pre-clinical and clinical conditions affecting the fetus. Evidence from animal models suggests that these associations may be partially explained by differential DNA methylation in the newborn with possible long-term consequences. To test this in humans, we meta-analyzed the epigenome-wide associations of maternal haemoglobin levels during pregnancy with offspring DNA methylation in 3,967 newborn cord blood and 1,534 children and 1,962 adolescent whole-blood samples derived from 10 cohorts. DNA methylation was measured using Illumina Infinium Methylation 450K or MethylationEPIC arrays covering 450,000 and 850,000 methylation sites, respectively. There was no statistical support for the association of maternal haemoglobin levels with offspring DNA methylation either at individual methylation sites or clustered in regions. For most participants, maternal haemoglobin levels were within the normal range in the current study, whereas adverse perinatal outcomes often arise at the extremes. Thus, this study does not rule out the possibility that associations with offspring DNA methylation might be seen in studies with more extreme maternal haemoglobin levels.Peer reviewe

    Maternal haemoglobin levels in pregnancy and child DNA methylation: a study in the pregnancy and childhood epigenetics consortium

    Get PDF
    Altered maternal haemoglobin levels during pregnancy are associated with pre-clinical and clinical conditions affecting the fetus. Evidence from animal models suggests that these associations may be partially explained by differential DNA methylation in the newborn with possible long-term consequences. To test this in humans, we meta-analyzed the epigenome-wide associations of maternal haemoglobin levels during pregnancy with offspring DNA methylation in 3,967 newborn cord blood and 1,534 children and 1,962 adolescent whole-blood samples derived from 10 cohorts. DNA methylation was measured using Illumina Infinium Methylation 450K or MethylationEPIC arrays covering 450,000 and 850,000 methylation sites, respectively. There was no statistical support for the association of maternal haemoglobin levels with offspring DNA methylation either at individual methylation sites or clustered in regions. For most participants, maternal haemoglobin levels were within the normal range in the current study, whereas adverse perinatal outcomes often arise at the extremes. Thus, this study does not rule out the possibility that associations with offspring DNA methylation might be seen in studies with more extreme maternal haemoglobin levels

    Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists

    Get PDF

    Arsenic Exposure and Epigenetic Aging: The Association with Cardiovascular Disease and All-Cause Mortality in the Strong Heart Study

    Get PDF
    Background: Inorganic arsenic (As) may increase the risk of cardiovascular disease (CVD) and all-cause mortality through accelerated aging, which can be estimated using epigenetic-based measures. Objectives: We evaluated three DNA methylation-based aging measures (PhenoAge, GrimAge, DunedinPACE) (epigenetic aging measures) as potential mediators of the previously reported association of As exposure with CVD incidence, CVD mortality, and all-cause mortality in the Strong Heart Study (SHS), an epidemiological cohort of American Indian adults. Methods: Blood DNA methylation and urinary As levels were measured in 2,323 SHS participants (41.5% men, mean age of 55 years old). PhenoAge and GrimAge values were calculated using a residual-based method. We tested the association of urinary As with epigenetic aging measures using linear regression, the association of epigenetic aging measures with the three health outcomes using additive hazards models, and the mediation of As-related CVD incidence, CVD mortality, and all-cause mortality by epigenetic aging measures using the product of coefficients method. Results: SHS participants with higher vs. lower urinary As levels had similar PhenoAge age, older GrimAge age, and faster DunedinPACE. An interquartile range increase in urinary As was associated with higher of PhenoAge age acceleration [ mean difference (95% confidence interval) = 0.48 (0.17, 0.80) years], GrimAge age acceleration [0.80 (0.60, 1.00) years], and DunedinPACE [0.011 (0.005, 0.018)], after adjusting for age, sex, center location, genetic components, smoking status, and body mass index. Of the 347 incident CVD events per 100,000 person-years associated with a doubling in As exposure, 21.3% (9.1, 57.1) and 22.6% (9.5, 56.9), were attributable to differences in GrimAge and DunedinPACE, respectively. Discussion: Arsenic exposure was associated with older GrimAge and faster DunedinPACE measures of biological age. Furthermore, accelerated biological aging measured from DNA methylation accounted for a relevant fraction of As-associated risk for CVD, CVD mortality, and all-cause mortality in the SHS, supporting the role of As in accelerated aging. Research of the biological underpinnings can contribute to a better understanding of the role of aging in arsenic-related disease. https://doi.org/10.1289/EHP11981.The Strong Heart Study was supported by grants from the National Heart, Lung, and Blood Institute contracts 75N92019D00027, 75N92019D00028, 75N92019D00029, and 75N92019D00030; previous grants R01HL090863, R01HL109315, R01HL109301, R01HL109284, R01HL109282, and R01HL109319; and cooperative agreements U01HL41642, U01HL41652, U01HL41654, U01HL65520, and U01HL65521; and by National Institute of Environmental Health Sciences grants R01ES021367, R01ES025216, P42ES033719, and P30ES009089. A.D.-R. was supported by a fellowship from la Caixa Foundation (ID 100010434; code LCF/BQ/DR19/11740016). A.A. was supported by the National Institute of General Medical Sciences R25 GM062454 and NIEHS F31 ES032321. D.W.B. is a fellow of the CIFAR CBD Network.S

    Trophic transfer and effects of DDT in male hornyhead turbot (Pleuronichthys verticalis) from Palos Verdes Superfund site, CA (USA) and comparisons to field monitoring

    No full text
    High concentrations of DDT and metabolites (ΣDDT) have been detected in sediment and the demersal flatfish hornyhead turbot (Pleuronichtys verticalis) collected from Palos Verdes (PV), California, USA, a site contaminated with over 100 metric tons of DDT throughout 1960s-70s. This study was conducted to assess the transfer of ΣDDT from PV-sediment into polychaetes (Neanthes arenaceodentata) and hornyhead turbot, and to investigate if the responses in turbots from two different laboratory exposures mimic those in turbots caught in PV (PV-turbot). Turbot fed PV-sediment-contaminated polychaete for 7 days had liver concentrations of ΣDDT similar to PV-turbot. After 28 days, ΣDDT also accumulated in livers of turbot gavaged with a ΣDDT mixture. In vitro cell bioassays indicated significant increases of 17β-estradiol equivalents (EEQ) in turbot bile extracts as compared to the control in the 7-day study. These responses corresponded to those measured in PV-fish. Glucocorticoid receptor (GR), anti-androgen receptor (anti-AR), estrogen receptor (ER) or aryl hydrocarbon receptor (AhR) activities were also observed in extracts of PV-sediment, and PV-sediment-exposed worm. Anti-AR, AhR and GR activities were significantly higher in PV-sediment than reference sediment (San Diego, SD). Higher transcripts of hepatic VTG, ERα and ERβ were found in PV-turbot than SD-turbot, but were unaltered in fish exposed to sediment-contaminated worms for the 7-day study. In contrast, liver extracts from the 28-day treatment of ΣDDT showed lower EEQ but similar hepatic VTG and ERβ transcripts relative to those of PV-turbot. These data indicated that trophic transfer of sediment-associated DDT in 7-day exposures corresponded to field measurements of DDT residues and in vitro ER bioactivities, but failed to mimic in vivo biological effects observed in field fish. In contrast, treatment with ΣDDT alone for 28 days mimicked in vivo biological effects of DDTs in PV fish, but did not correspond to liver concentrations or in vitro bioactivities

    Influence of Temperature on the Thyroidogenic Effects of Diuron and Its Metabolite 3,4-DCA in Tadpoles of the American Bullfrog (<i>Lithobates catesbeianus</i>)

    No full text
    Temperature is a key variable affecting the timing of amphibian metamorphosis from tadpoles to tetrapods, through the production and subsequent function of thyroid hormones (TH). Thyroid function can be impaired by environmental contaminants as well as temperature. Tadpoles can experience large temperature fluctuations in their habitats and many species are distributed in areas that may be impacted by agriculture. Diuron is a widely used herbicide detected in freshwater ecosystems and may impact endocrine function in aquatic organisms. We evaluated the influence of temperature (28 and 34 °C) on the action of diuron and its metabolite 3,4-dichloroaniline (3,4-DCA) on thyroid function and metamorphosis in tadpoles of <i>Lithobates catesbeianus</i>. Exposure to both compounds induced more pronounced changes in gene expression and plasma 3,3′,5-triiodothyronine (T<sub>3</sub>) concentrations in tadpoles treated at higher temperature. T<sub>3</sub> concentrations were increased in tadpoles exposed to 200 ng/L of diuron at 34 °C and an acceleration of metamorphosis was observed for the same group. Transcriptomic responses included alteration of thyroid hormone induced bZip protein (<i>thibz</i>), deiodinases (<i>dio2</i>, <i>dio3</i>), thyroid receptors (<i>trα</i>, <i>trβ</i>) and Krüppel-like factor 9 (<i>klf9</i>), suggesting regulation by temperature on TH-gene expression. These results suggest that environmental temperature should be considered in risk assessments of environmental contaminants for amphibian species

    Metal mixtures and DNA methylation measures of biological aging in American Indian populations

    No full text
    Introduction: Native American communities suffer disproportionately from elevated metal exposures and increased risk for cardiovascular diseases and diabetes. DNA methylation is a sensitive biomarker of aging-related processes and novel epigenetic-based “clocks” can be used to estimate accelerated biological aging that may underlie increased risk. Metals alter DNA methylation, yet little is known about their individual and combined impact on epigenetic age acceleration. Our objective was to investigate the associations of metals on several DNA methylation-based aging measures in the Strong Heart Study (SHS) cohort. Methods: Blood DNA methylation data from 2,301 SHS participants was used to calculate age acceleration of epigenetic clocks (PhenoAge, GrimAge, DunedinPACE, Hannum, Horvath). Urinary metals [arsenic (As), cadmium (Cd), tungsten (W), zinc (Zn), selenium (Se), molybdenum (Mo)] were creatinine-adjusted and categorized into quartiles. We examined associations of individual metals through linear regression models and used Bayesian Kernel Machine Regression (BKMR) for the impact of the total metal mixture on epigenetic age acceleration. Results: The mixture of nonessential metals (W, As, Cd) was associated with greater GrimAge acceleration and DunedinPACE, while the essential metal mixture (Se, Zn, Mo) was associated with lower epigenetic age acceleration. Cd was associated with increased epigenetic age acceleration across all clocks and BKMR analysis suggested nonlinear associations between Se and DunedinPACE, GrimAge, and PhenoAge acceleration. No interactions between individual metals were observed. The associations between Cd, Zn, and epigenetic age acceleration were greater in never smokers in comparison to current/former smokers. Conclusion: Nonessential metals were positively associated with greater epigenetic age acceleration, with strongest associations observed between Cd and DunedinPACE and GrimAge acceleration. In contrast, essential metals were associated with lower epigenetic aging. Examining the influence of metal mixtures on epigenetic age acceleration can provide insight into metals and aging-related diseases

    Epigenetic Biomarkers of Lead Exposure and Cardiovascular Disease: Prospective Evidence in the Strong Heart Study

    No full text
    Background: Lead is a cardiotoxic metal with a variety of adverse health effects. In the absence of data on bone lead exposure, epigenetic biomarkers can serve as indicators of cumulative lead exposure and body burden. Herein, we leveraged novel epigenetic biomarkers of lead exposure to investigate their association with cardiovascular disease (CVD) incidence and mortality. Methods and Results: Blood DNA methylation was measured using the Illumina MethylationEPIC BeadChip among 2231 participants of the Strong Heart Study (SHS) at baseline (1989-1991). Epigenetic biomarkers of lead levels in blood, patella, and tibia were estimated using previously identified cytosine-guanine dinucleotide (CpG) sites. CVD incidence and mortality data were available through 2017. Median concentrations of lead epigenetic biomarkers were 13.8 μg/g, 21.3 μg/g, and 2.9 μg/dL in tibia, patella, and blood, respectively. In adjusted models, the hazard ratio (HR) (95% CI) of CVD mortality per doubling increase in lead epigenetic biomarkers were 1.42 (1.07-1.87) for tibia lead, 1.22 (0.93-1.60) for patella lead, and 1.57 (1.16-2.11) for blood lead. The corresponding HRs for incident CVD were 0.99 (0.83-1.19), 1.07 (0.89-1.29), and 1.06 (0.87-1.30). The association between the tibia lead epigenetic biomarker and CVD mortality was modified by sex (interaction P value: 0.014), with men at increased risk (HR, 1.42 [95% CI, 1.17-1.72]) compared with women (HR, 1.04 [95% CI, 0.89-1.22]). Conclusions: Tibia and blood epigenetic biomarkers were associated with increased risk of CVD mortality, potentially reflecting the cardiovascular impact of cumulative and recent lead exposures. These findings support that epigenetic biomarkers of lead exposure may capture some of the disease risk associated with lead exposure.This work was funded by the National Institute of Environmental Health Sciences (T32 ES007322). This work was supported by grants by the National Heart, Lung, and Blood Institute (under contract numbers 75N92019D00027, 75N92019D00028, 75N92019D00029, and 75N92019D00030) and previ-ous grants (R01HL090863, R01HL109315, R01HL109301, R01HL109284, R01HL109282, and R01HL109319) and cooperative agreements (U01HL41642, U01HL41652, U01HL41654, U01HL65520, and U01HL65521), by the National Institute of Environmental Health Sciences (R01ES021367, R01ES025216, P42ES010349, and P30ES009089) and by the Spanish Funds for Research in Health Sciences, Carlos III Health Institute, cofunded by European Regional Development Fund (CP12/03080 and PI15/00071). A. Domingo- Relloso was supported by a fellowship from “la Caixa” Foundation (identifier 100010434) (fellowship code “LCF/BQ/DR19/11740016”). Dr Gao was supported by the Peking University Start-up Grant (BMU2021YJ044). During the preparation of this article, Dr Colicino was supported by R01 ES032242 and P30 ES023515. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Indian Health Service. The funders had no role in study design, data collection and analysis, preparation of the manuscript, or decision to submit the manuscript for publication.S
    corecore