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BACKGROUND: Inorganic arsenic (As) may increase the risk of cardiovascular disease (CVD) and all-cause mortality through accelerated aging, which
can be estimated using epigenetic-based measures.

OBJECTIVES: We evaluated three DNA methylation-based aging measures (PhenoAge, GrimAge, DunedinPACE) (epigenetic aging measures) as
potential mediators of the previously reported association of As exposure with CVD incidence, CVD mortality, and all-cause mortality in the Strong
Heart Study (SHS), an epidemiological cohort of American Indian adults.
METHODS: Blood DNA methylation and urinary As levels were measured in 2,323 SHS participants (41.5% men, mean age of 55 years old).
PhenoAge and GrimAge values were calculated using a residual-based method. We tested the association of urinary As with epigenetic aging meas-
ures using linear regression, the association of epigenetic aging measures with the three health outcomes using additive hazards models, and the medi-
ation of As-related CVD incidence, CVD mortality, and all-cause mortality by epigenetic aging measures using the product of coefficients method.
RESULTS: SHS participants with higher vs. lower urinary As levels had similar PhenoAge age, older GrimAge age, and faster DunedinPACE. An inter-
quartile range increase in urinary As was associated with higher of PhenoAge age acceleration [mean difference ð95% confidence intervalÞ=0:48 (0.17,
0.80) years], GrimAge age acceleration [0.80 (0.60, 1.00) years], and DunedinPACE [0.011 (0.005, 0.018)], after adjusting for age, sex, center location,
genetic components, smoking status, and body mass index. Of the 347 incident CVD events per 100,000 person-years associated with a doubling in As
exposure, 21.3% (9.1, 57.1) and 22.6% (9.5, 56.9), were attributable to differences in GrimAge and DunedinPACE, respectively.
DISCUSSION: Arsenic exposure was associated with older GrimAge and faster DunedinPACE measures of biological age. Furthermore, accelerated bi-
ological aging measured from DNA methylation accounted for a relevant fraction of As-associated risk for CVD, CVD mortality, and all-cause mor-
tality in the SHS, supporting the role of As in accelerated aging. Research of the biological underpinnings can contribute to a better understanding of
the role of aging in arsenic-related disease. https://doi.org/10.1289/EHP11981

Introduction
Exposure to inorganic arsenic (As), a toxic and carcinogenicmetal-
loid, is a pervasive global health problem. Arsenic exposure has
been associated with a higher risk of numerous adverse health
outcomes including cardiovascular disease (CVD)1–3 and other
age-related conditions such as diabetes and neurodegenerative

disease.4,5 Arsenic may contribute to multisystem decline by
accelerating physiological aging processes.4

Physiological aging can be evaluated through modifications
in the epigenome,6,7 most commonly that of DNA methylation
[the addition of a methyl group to a cytosine that precedes a
guanine (CpG site)].8 Arsenic exposure has been associated
with differentially methylated CpGs in blood within various
global populations.9–13 Differential methylation of CpG sites has
also been implicated in various forms of CVD14–17 and underlying
pathophysiological factors.18–20 Whether As-related biological
aging is related to CVD development is unknown.

Leading methods to quantify biological aging consist of a set
of algorithms that are applied to blood DNA methylation, known
as “epigenetic clocks.” These algorithms output “epigenetic age”
values that are correlated with chronological age and with age-
related morbidity and mortality.21 Initial epigenetic clocks (e.g.,
the Hannum and Horvath clocks), were developed to predict
how long a person had lived until the time of sampling, i.e.,
their chronological age. These clocks, however, show weak
and inconsistent associations with age-related morbidities.22–24

A “second-generation” of epigenetic clocks (e.g., the PhenoAge25

and GrimAge26 clocks) were developed to predict the duration of
survival from the time of sampling, i.e., time to death. PhenoAge
and GrimAge included blood analytes in intermediate stages of
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algorithm development. These clocks more accurately predict age-
related physical and cognitive decline and age-related morbid-
ities.24,27 In complement to these clocks, Belsky et al. introduced
measures to quantify the pace of aging, defined as the rate of deteri-
oration in physiological system integrity and measured from longi-
tudinal analysis of change in a panel of blood analytes and organ
function tests in the Dunedin Study birth cohort.28,29 The current
DNA methylation-based pace of aging measure is DunedinPACE
(pace of aging computed from the epigenome).

The PhenoAge, GrimAge, and DunedinPACE aging measures
are associated with CVD incidence and mortality as well as all-
cause mortality in multiple cohorts, with some inconsisten-
cies.23,25,26,30–32 Few studies have evaluated the relation of As
with biological aging, although a positive association has been
suggested,33 and, to the best of our knowledge, no studies have
examined the intermediate role of DNA methylation-based aging
measures in As-related diseases including CVD and all-cause
mortality. We analyzed blood DNA methylation, urinary As, and
CVD incidence and mortality data from the Strong Heart Study
(SHS) to test the hypothesis that As exposure accelerates biologi-
cal aging and that this accelerated aging mediates As-induced
CVD incidence and CVD mortality, as well as all-cause mortal-
ity. The SHS is the largest study of CVD in American Indian
populations, who were historically exposed to low-to-moderate
levels of As in drinking water until the late 2000s.34 Previous
studies in the SHS have identified urinary As levels as a good mea-
sure of long-term As exposure in drinking water and As exposure as
a risk factor for CVD incidence and all-cause mortality.2,35–39

Arsenic exposure is also associated with changes in locus-specific
DNA methylation patterns,2,13 which in turn have been related to
incident coronary heart disease (CHD).40 There is thus an empirical
basis for investigating epigenetic aging as a mediator of the As-
CVD association within the SHS.

Methods

Study Population
The SHS recruited 4,549 men and women 45–75 years of age who
were members of 13 tribes based in Arizona, Oklahoma, North
Dakota, and South Dakota to participate in the baseline visit
(1989–1991). In 2016, a Tribal Nation from Arizona declined fur-
ther participation, leaving 3,517 participants. DNA methylation
was analyzed in blood samples collected from 2,351 participants
at the baseline visit (1989–1991) who did not have CVD, had
community agreement, and had sufficient remaining blood sam-
ples for epigenetic analyses.41 We excluded 26 participants given
previously published preprocessing exclusion criteria41 and two
participants who did not have complete data on relevant variables,
leaving 2,323 participants for this study who had complete data.40

We restricted follow-up data through the end of 2009 for analysis
to account for the change in groundwater As exposure that resulted
from the enactment of the US EPA’s Final Arsenic Rule in
2006.39,42,43

Urinary Arsenic Measurements
Arsenic concentrations were measured in urine samples (collected
at the baseline period of 1989–1991 along with the blood samples
for DNA extraction) that had a sufficient volume for measure-
ment.44 Baseline spot urine samples were stored in polypropylene
tubes, and frozen samples were shipped on dry ice to the MedStar
Health Research Institute (Washington DC, USA), where they
were stored at <− 70�C. In the period of 2009–2010, samples were
thawed, and an aliquot of up to 1:0 mL was transported on dry ice
to the Trace Elements Laboratory, Graz University (Austria) for

analysis of As species [inorganic As (iAs), monomethyl-As (MMA),
and dimethyl-As (DMA) species] using high-performance liquid
chromatography (HPLC) coupled to inductively coupled plasmamass
spectrometry (ICP-MS) (Agilent HPLC and Agilent 7700× ICP-MS;
Agilent Technologies).44 Interassay coefficients of variation were
6.0%, 6.5%, and 5.9% for iAs, MMA, and DMA, respectively. The
limit of detection (LOD) for iAs [arsenite ðAsIIIÞ+arsenate ðAsVÞ],
MMA, and DMAwas 0:1 lg=L.44 Samples with As species concen-
trations beneath the LOD were replaced with LOD=

p
2 (iAs:

n=128, 5.5%;MMA: n=17, 0.7%; DMA: n=0). Concentrations of
arsenobetaine, a nontoxic As species found in seafood,45 were low
(median= 0:65 lg=g creatinine), reflecting little seafood intake in
the study population. Sum of inorganic and methylated arsenic was
calculated as the sum of the concentrations of iAs, MMA, and DMA
and is referred to herein as urinary As. Urinary As concentrations
(lg=L) were divided by urinary creatinine (g=L) to account for urine
dilution.

Cardiovascular Disease Follow-up
The endpoints of this study are CVD mortality, CVD incidence,
and all-cause mortality.2 Outcomes in the follow-up period were
assessed by annual contact, by annual mortality and morbidity
surveillance of hospitalization and death records through 2009,
and at two research clinic visits conducted in 1993–1995 and
1998–1999. Follow-up through 2009 was more than 99% com-
plete for mortality and nonfatal events. When a possible cardio-
vascular event was identified, medical records were reviewed by
a physician committee experienced in the adjudication of CVD
events for population-based research. We defined incident cardio-
vascular disease as the first occurrence of coronary heart disease
or stroke, definite nonfatal congestive heart failure, or other fatal
cardiovascular disease. We defined incident coronary heart dis-
ease as the first occurrence of definite nonfatal coronary heart dis-
ease or definite and possible fatal coronary heart disease. Incident
stroke was defined as the first occurrence of a definite nonfatal
stroke or a definite or possible fatal stroke. Detailed definitions
of the criteria used by the review committees have been
described in detail previously.2,34 Follow-up time is defined as
the period from the initial drawing of blood used for DNA
methylation analysis to the time of a CVD event, CVD death, or
death due to any reason. Follow-up was censored at the time of
any of these events, when a participant was lost to follow-up, or
on 31 December 2009.

Microarray DNAMethylation Measurements and DNA
Methylation-Based Aging Measures
Details of microarray DNA methylation measurements in the
SHS have been previously described.41 Briefly, the Illumina
Infinium MethylationEPIC BeadChip microarray (850K) was
used to measure DNA methylation using bisulfite-converted
DNA from white blood cells of 2,351 participants at baseline
(same time as urine collection). Exclusion criteria included low
detection p-values, cross-hybridizing probes, probes located in
sex chromosomes, and single nucleotide polymorphisms (SNPs)
with minor allele frequency >0:05. Single sample noob normal-
ization and regression on correlated probes normalization were
conducted following Illumina’s recommendations for preprocess-
ing.46 Blood cell proportions (CD8T, CD4T, NK cells, B cells,
monocytes, and neutrophils) were estimated using the R package
FlowSorted.Blood.EPIC, which uses the Houseman projection
method.47

We computed epigenetic age values from DNA methylation
data of the SHS cohort using the epigenetic clock algorithms cre-
ated by Levine et al. (PhenoAge),25 Lu et al. (GrimAge)26 (primary
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analysis), and Hannum et al.22 and Horvath23 (secondary analysis).
GrimAge was calculated using the Horvath Lab’s webtool at
https://dnamage.genetics.ucla.edu/new. So-called epigenetic “age
acceleration” values, with a unit in years, were computed for each
measure by extracting the residuals from the regression of each par-
ticipant’s epigenetic age against their chronological age. We com-
puted pace of aging values using the algorithm for DunedinPACE
developed by Belsky et al.28 Pace of aging values, which have a
unit of years of biological aging per chronological year (i.e., no
units as years cancel out), inherently represent age acceleration as a
ratio vs. chronological age; thus, their calculation differs from the
other epigenetic aging measures.

Other Relevant Variables
Trained and certified interviewers administered standardized ques-
tionnaires [age, sex, center, smoking status (current, former, never),
medication use, education]; centrally trained nurses and medical
assistants measured height, weight, and systolic and diastolic blood
pressures and collected blood and urine samples according to stand-
ardized protocols. Methods for measuring blood pressure, lipids
[including total cholesterol, low-density lipoprotein (LDL), high-
density lipoprotein (HDL), and triglycerides], fasting glucose, oral
glucose tolerance, hemoglobin A1c, and plasma creatinine have
been previously described.2 LDL cholesterol levels were calculated
using the Friedewald equation for participants with triglyceride
levels <400 mg=dL, with missing values replaced by measured
LDL levels.2 Diabetes was defined as a fasting glucose level
≥126 mg=dL, 2-h postload plasma glucose level of ≥200 mg=dL,
hemoglobin A1c ≥6:5%, or self-reported use of diabetes-related
medications (insulin or an oral hypoglycemic agent). We used the
Chronic Kidney Disease Epidemiology Collaboration formula to
estimate glomerular filtration rate (eGFR), using plasma creati-
nine, age, and sex.48 Urinary creatinine levels were measured by
an automated alkaline picrate method.

Statistical Methods
All analyses were conducted using R software version 4.1.0 (R
Development Core Team). The findings for PhenoAge and
GrimAge age acceleration and DunedinPACE are presented
within tables in the main manuscript, while the findings for
Hannum and Horvath age acceleration are shown in supplemen-
tary tables. Arsenic has been previously associated with increased
risk of CVD incidence, CVD mortality, and all-cause mortality in
the SHS.2,38 We thus focused on the association of As with epi-
genetic aging measures, the association of epigenetic measures of
aging with the three study outcomes, and the potential mediation
of As-related outcomes by epigenetic aging measures.

Linear regression for the association of arsenic with aging
measures.Weused linear regressionmodels to assess the association
between As exposure and each epigenetic measure of aging. Urinary
As was adjusted for urinary creatinine levels and log2-transformed.
Epigenetic age acceleration values for PhenoAge and GrimAge (and
Hannum and Horvath) clocks were used in linear regression models.
DunedinPACEvalueswere directly used in linear regressionmodels.

Models were progressively adjusted as follows. Model 1 was
adjusted for several baseline covariates: chronological age (contin-
uous), sex (categorical—male or female), center (categorical—
Arizona, Oklahoma, or North Dakota and South Dakota), five
genetic principal components49 (PCs) (continuous) to account
for potential ancestry-related genetic artifacts in the DNA meth-
ylation data50 (see Domingo-Relloso et al.49 for further detail
regarding calculation of genetic PCs in the SHS), and eGFR
(continuous) to account for the impact of kidney function in uri-
nary As excretion.51 Model 2 was further adjusted for body

mass index (BMI) (continuous) and smoking status (categorical—
never, former, or current). Model 3 was additionally adjusted for
estimated Houseman cell proportions (CD8T, CD4T, NK, B cells,
and monocytes) (continuous), and it was considered a sensitivity
analysis.

Effect estimates were reported as mean epigenetic age accel-
eration (in years) or the increase in pace of aging, comparing
each of the three highest quartiles of urinary As to the lowest
quartile, as well as comparing an interquartile range increase of
urinary As (in separate models).

Survival analysis for the association of DNA methylation-
based aging measures with health outcomes. We generated Cox
proportional-hazards models comparing the interquartile range of
epigenetic age acceleration or pace of aging values for three out-
comes: CVD incidence, CVD mortality, and all-cause mortality.
We used the R package survival.52 Models were progressively
adjusted as follows. Model 1 was adjusted for chronological age
(continuous), sex (categorical—male or female), center (categori-
cal—Arizona, Oklahoma, or North Dakota and South Dakota),
and the aforementioned five genetic PCs (continuous). Model 2
was further adjusted for BMI (continuous) and smoking status
(categorical—never, former, or current). Model 3 was further
adjusted for eGFR (continuous), LDL cholesterol (continuous),
HDL cholesterol (continuous), systolic blood pressure (continu-
ous), hypertension treatment (categorical—yes or no medication
use), and diabetes status (categorical—yes or no diagnosis) to con-
trol for classical determinants of CVD. Model 4 was additionally
adjusted for estimated Houseman cell proportions and was consid-
ered a sensitivity analysis. We conducted a competing risks analy-
sis considering non-CVD mortality as a potential competing risk.
We used the Fine-Gray model as implemented by the R package
survival.53 Fine-Gray models were adjusted for the full set of con-
founders of Model 4.

Mediation analysis. To evaluate whether DNA methylation-
based aging measures have a statistically mediating role in As-
related CVD incidence, CVD mortality, or all-cause mortality, we
conducted a mediation analysis using the product of coefficients
method with an approach that is suitable for time-to-event models
as adapted by Lange and Hansen.54 We used additive hazards
models for mediation analysis as these models quantify the
effects on an additive rate scale, which is collapsible, as opposed
to the hazard ratio, which is non-collapsible.54–56 However, we
also present the total effects in a multiplicative scale using Cox
proportional hazards models in the supplementary material for
comparative purposes with other studies. Our outcome model
was an additive hazards model with CVD incidence, CVD mor-
tality, or all-cause mortality as the outcome, log2-transformed
urinary As at baseline as the exposure, and epigenetic age accel-
eration or pace of aging as the mediator, additionally adjusted for
two different sets of confounders as follows:

Model 1 is adjusted for chronological age, sex, center, genetic
PCs, BMI, and smoking status. These covariates were selected
based on knowledge from previous studies of As, DNA methyla-
tion, and CVD in the SHS. We did not adjust for education as our
previous study showed a similar association between arsenic and
incident CVD before and after adjustment for education.

Model 2 is additionally adjusted for eGFR, LDL cholesterol,
HDL cholesterol, systolic blood pressure, hypertension treatment,
and diabetes status. These variables were not included in the
main model, as previous studies have suggested that they might
be mediators in the association between As and CVD, and adjust-
ing the models for mediators might lead to an underestimation of
the effect estimates. However, prior research has demonstrated
that As affects CVD risk factors,57 including these covariates in
our models would allow us to isolate the independent mediating
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effect of biological aging on the As-CVD pathway beyond those
established risk factors. We thus provide the mediation models
with and without CVD risk factors for transparency and compari-
son to the same model without those adjustments.

Model 3 is a sensitivity analysis which is adjusted for Houseman
cell proportions.

Thus, our outcome model was as follows:

CVD ∼ b1 logAs+ b2DNAmage +
X

biconfounderi:

Our mediator model was a linear model with epigenetic age
acceleration or pace of aging as the outcome and As as the expo-
sure, additionally adjusted for the same sets of confounders, as
follows:

DNAmage ∼ a1 logAs+
X

aiconfounderi:

The product of coefficients method calculated the effects of
interest in the following ways:

• Indirect effect= a1 ×b2
• Direct effect =b1

• Total effect = indirect effect + direct effect
• Relative indirect effect = indirect effect

total effect × 100
Lange and Hansen54 adapted the definition of those effects to

a survival context. We calculated confidence intervals (CIs) for
each effect of interest by resampling random values from a multi-
variate normal distribution of the estimated effects.

We reported total effects, natural indirect effects (IEs), and
natural direct effects (DEs). The total effect refers to the number
of events of incident CVD, fatal CVD, or death per 100,000
person-years attributable to a doubling in urinary As concentra-
tion. The natural DE refers to the effect of a doubling of urinary
As concentration on the outcome when DNA methylation
(DNAm) aging is fixed to the reference value of 0. The natural IE
refers to the expected change in the outcome when As is fixed to
the reference value of 0, and DNAm changes from the value it
would take when As is fixed to the reference value of 0 to the
value it would take under a doubling of urinary As concentration.
To account for the withdrawal of one of the Tribal Nations from
the study (see the “Study Population” section41), the primary
mediation analysis computed an inverse probability weighting of
participants to reduce selection bias.58 We divided our data into

Table 1. Baseline characteristics by urinary arsenic concentration (lg=g creatinine) (1989–1991) and outcomes through 2009 among participants in the Strong
Heart Study. Epigenetic age acceleration values (reported in years) were computed as the residuals of regressing epigenetic age values (calculated according to
their respective algorithms) against participants’ corresponding chronological age. Epigenetic pace of aging values (reported in years of biological aging per
chronological year) were computed according to their respective algorithms as described in the main text.

Quartiles of total urinary arsenic (lg=g creatinine)

Parameter
<5:24

(3.82) (n=582)
5.24 – 8.56

(6.74) (n=580)
8.57 – 14.42

(11.05) (n=580)
>14:42

(20.66) (n=581)
Total

(n=2,323)

Age [years (mean±SD)] 56.2 (8.13) 56.4 (8.32) 55.8 (7.92) 56.2 (8.01) 56.2 (8.10)
Sex [n (%)]
Male 293 (50.3%) 234 (40.3%) 229 (39.5%) 207 (35.6%) 963 (41.5%)
Female 289 (49.7%) 346 (59.7%) 351 (60.5%) 374 (64.4%) 1,360 (58.5%)
Study center [n (%)]
Arizona 7 (1.2%) 35 (6.0%) 84 (14.5%) 186 (32.0%) 312 (13.4%)
Oklahoma 446 (76.6%) 312 (53.8%) 162 (27.9%) 61 (10.5%) 981 (42.2%)
North Dakota/South Dakota 129 (22.2%) 233 (40.2%) 334 (57.6%) 334 (57.5%) 1,030 (44.3%)
BMI [kg=m2 (mean±SD)] 30.5 (5.75) 30.5 (5.99) 30.2 (5.94) 30.0 (6.66) 30.3 (6.09)
Smoking status [n (%)]
Never 168 (28.9%) 172 (29.7%) 165 (28.4%) 179 (30.8%) 684 (29.4%)
Ever 206 (35.4%) 192 (33.1%) 185 (31.9%) 164 (28.2%) 747 (32.2%)
Current 208 (35.7%) 216 (37.2%) 230 (39.7%) 238 (41.0%) 892 (38.4%)
LDL cholesterol [mg=dL (mean±SD)] 123 (31.1) 122 (32.6) 120 (34.1) 116 (34.4) 120 (33.2)
HDL cholesterol [mg=dL (mean± SD)] 44.2 (12.9) 45.1 (12.2) 46.7 (14.1) 49.4 (15.7) 46.4 (13.9)
Systolic blood pressure (mean±SD) 126 (16.4) 127 (19.6) 125 (18.6) 126 (20.2) 126 (18.8)
Hypertension treatment [n (%)]
No 446 (76.6%) 465 (80.2%) 468 (80.7%) 480 (82.6%) 1,859 (80.0%)
Yes 136 (23.4%) 115 (19.8%) 112 (19.3%) 101 (17.4%) 464 (20.0%)
Diabetes diagnosis [n (%)]
No 377 (64.8%) 350 (60.3%) 348 (60.0%) 281 (48.4%) 1,356 (58.4%)
Yes 205 (35.2%) 230 (39.7%) 232 (40.0%) 300 (51.6%) 967 (41.6%)
Epigenetic age acceleration [years (mean± SD)]
PhenoAge −0:76 (6.82) −0:12 (6.78) −0:26 (6.27) 1.12 (6.97) 0.00 (6.75)
GrimAge −0:19 (4.57) −0:19 (4.48) 0.00 (4.63) 0.38 (4.56) 0.00 (4.56)
Hannum −0:33 (5.02) −0:40 (5.19) 0.13 (4.63) 0.61 (5.33) 0.00 (5.06)
Horvath −0:03 (5.09) −0:40 (5.26) 0.13 (4.93) 0.29 (5.35) 0.00 (5.16)
Pace of aging estimate [years of biological aging/chronological years (mean±SD)]
DunedinPACE 1.11 (0.130) 1.12 (0.134) 1.12 (0.135) 1.14 (0.129) 1.12 (0.133)
Incident CVD [n (%)]
No 339 (58.2%) 305 (52.6%) 325 (56.0%) 331 (57.0%) 1,300 (56.0%)
Yes 243 (41.8%) 275 (47.4%) 255 (44.0%) 250 (43.0%) 1,023 (44.0%)
CVD mortality [n (%)]
No 520 (89.3%) 498 (85.9%) 493 (85.0%) 496 (85.4%) 2,007 (86.4%)
Yes 62 (10.7%) 82 (14.1%) 87 (15.0%) 85 (14.6%) 316 (13.6%)
All-cause mortality [n (%)]
No 368 (63.2%) 328 (56.6%) 316 (54.5%) 256 (44.1%) 1,268 (54.6%)
Yes 214 (36.8%) 252 (43.4%) 264 (45.5%) 325 (55.9%) 1,055 (45.4%)

Note: No missing values. BMI, body mass index; CVD, cardiovascular disease; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; SD, standard
deviation.
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six different strata (one per sex and study center) and stored the
quantity of individuals in each of the strata in the original popula-
tion in the finite population correction (fpc) parameter of the svy-
design function from the R package survey,59 which is used to
account for complex study designs. Then, the weights were cal-
culated as 1 divided by the probability of each individual to
belong to each stratum. Those weights were subsequently added
to the regression models.

Three assumptions need to hold for causal effects to be validly
estimated in observational studies.60 First, the positivity assumption
refers to each exposure level happening in all strata of different con-
founders. As all different participant subgroups for the variables
used in the adjustment analysis are exposed to different levels of ar-
senic (Table 1), we assume positivity holds. Conversely, consis-
tency refers to the exposure being uniquely defined, which holds
as the exposure is defined as doubling of As exposure. Last, the
exchangeability assumption refers to no unmeasured confounding.
In particular, for mediation analysis, four assumptions related to
confounding need to hold for direct and indirect effects to be inter-
preted as causal.61 First, there is no unmeasured confounding on the
exposure-outcome relationship. Second, there is no unmeasured
confounding on the mediator-outcome relationship. Third, there is
no unmeasured confounding on the exposure-mediator relationship.
Finally, there should be no confounder that affects the mediator-
outcome relationship and is itself affected by the exposure. Potential
violations of these assumptions are discussed in the “Discussion”
section. We evaluated potential exposure-mediator interactions for
the model containing the full set of confounders (Model 4) by add-
ing an interaction term to the outcome model for each outcome and
each DNAmethylation clock. The code to reproduce our mediation
analysis can be found in the Supplementary Material (mediation_a-
nalysis_code.R).

Results

Participant Characteristics
Themedian [interquartile range (IQR)] urinaryAs of the participants
in this study was 8:56 ð5:24, 14:4Þ lg=g creatinine. Participant
characteristics stratified by quartile of As exposure are displayed
in Table 1, while participant characteristics by CVD incidence,
CVD mortality, and all-cause mortality outcome are displayed in
Table 2. From a total of 2,323 participants, 1,023 developed
incident CVD, 316 died of CVD, and 1,055 died of any cause
in the follow-up period until the end of 2009 (Table 1).
Compared to participants who did not develop CVD, those
with incident CVD were older and more likely to be male and cur-
rent smokers (Table 2). On average, participants who developed
CVD also had higher BMI, LDL cholesterol levels, and systolic
blood pressure and a greater frequency of hypertension and dia-
betes (Table 2).

Compared to the mean± standard deviation ðSDÞ chronologi-
cal age of 56.2 (8.10) years, the mean±SD epigenetic age values
(estimated from epigenetic acceleration corrected for the mean
epigenetic age) were younger for the PhenoAge, GrimAge, and
Hannum clocks [50.1 (6.8), 40.7 (4.6), and 50.6 (5.1) years, respec-
tively], and older for Horvath [58.3 (5.2) years] (Figure S1),
although all measures were strongly correlated with chronologi-
cal age (Figure 1). The mean±SD value of DunedinPACE
(years of epigenetic aging per chronological year) was 1.12
(0.13), indicating faster biological aging than expected, but this
measure had a weak positive correlation with chronological age
(r=0:08; p<0:01) (Figure 1). The associations of the epige-
netic aging measures with other participant characteristics are
shown in Figure S2.

Arsenic and DNAMethylation-Based Aging Measures
Participants with urinary As levels in the highest quartile had older
PhenoAge and GrimAge age and faster DunedinPACE compared to
those in the lowest quartile (Figure 2). In linear regression models
adjusted for chronological age, sex, center, genetic PCs, and eGFR,
an IQR increase in urinary As was associated with higher levels
of PhenoAge age acceleration [mean difference ð95%CIÞ=0:48
(0.17, 0.80); p=0:04], GrimAge age acceleration [0.80 (0.60, 1.00);
p<0:001], and DunedinPACE [mean difference ð95%CIÞ=0:011
(0.005, 0.018); p=0:01] (Table 3, Model 1). After further adjust-
ment for BMI and smoking status, all associations between As and
the three aging measures remained significant, although the effect
size for GrimAge age acceleration was attenuated (Table 3, Model
2). A sensitivity analysis that adjusted models for Houseman cell
proportions attenuated the effect sizes of As on all three biological
agingmeasures, although the associations betweenAs andGrimAge
age acceleration [mean difference ð95%CIÞ=0:44 (0.28, 0.61);
p<0:001] and DunedinPACE [mean difference ð95%CIÞ=0:009
(0.004, 0.015); p=0:02] remained significant (Table 3, Model 3).
HannumandHorvath age accelerationwere not significantly associ-
atedwith urinaryAs in any adjustedmodels (Table S1).

Mediation Analysis
In initial mediation models adjusting for chronological age,
sex, center, genetic PCs, BMI, and smoking status, the IEs of
PhenoAge, GrimAge, and DunedinPACE on As-related CVD
incidence and CVD mortality were statistically significant
(Table 4). Of the 347 incident CVD events per 100,000 person-
years associated with a doubling in As exposure, 33.8 (95% CI:
3.7, 74.5) events [8.9% (1.0%, 26.3%) of the total effect of As]
could be attributed to As-related changes in PhenoAge. The
relative IEs (95% CI) of GrimAge and DunedinPACE were
21.3% (9.1%, 57.1%) and 22.6% (9.5%, 56.9%), respectively
(Table 4). The relative IEs of PhenoAge, GrimAge, and
DunedinPACE for As-related CVD mortality were 9.2% (0.7%,
31.5%), 28.3% (12.0%, 87.7%), and 20.0% (6.9%, 65.6%),
respectively.

In mediation models additionally adjusted for CVD risk fac-
tors, the indirect effects (IEs) of PhenoAge age acceleration,
GrimAge age acceleration, and DunedinPACE onAs-related CVD
incidence remained statistically significant, contributing relative
IEs of 6.8% (0.3%, 22.4%), 17.2% (6.7%, 50.7%), and 15.0% (4.9%,
42.8%), respectively (Table 5). The IEs of GrimAge age accelera-
tion and DunedinPACE for As-related CVD mortality also
remained statistically significant, with each measure contributing a
relative IE of 23.0% (8.9%, 80.5%) and 13.1% (3.2%, 48.9%),
respectively. The total effects of As and corresponding IEs of
PhenoAge age acceleration, GrimAge age acceleration, and
DunedinPACE on all outcomes are depicted in Figure 3. The rela-
tive IEs of all threemeasures of aging for As-related all-cause mor-
tality remained statistically significant. A sensitivity analysis that
further adjusted the mediation models in Table 5 for Houseman
cell proportions attenuated the indirect effect sizes for all DNA
methylation-based aging measures, although the IEs of GrimAge
age acceleration and DunedinPACE remained significant for all
outcomes (Table S2).

The results of the exposure-mediator interaction analysis can
be found in Table S3. No exposure-mediator interactions were
present for GrimAge for any outcome. For DunedinPACE, the
interaction term was statistically significant for all-cause mortality.
However, the coefficient of DunedinPACE itself was not significant
in that model. Thus, we did not consider this as an exposure-
mediator interaction. For PhenoAge, exposure-mediator interaction
was significant for the three outcomes. Thus, we also calculated
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natural direct and indirect effects using the formulas provided in
Valeri and Vanderweele62 adapted to the additive hazards model
setting. The results are shown in Table S4. When considering an
interaction term, the indirect effect was negative for both CVD inci-
dence and CVD mortality.

Hannum and Horvath age acceleration did not contribute a
significant IE to As-related CVD incidence, CVD mortality, or
all-cause mortality in initial or adjusted mediation models (Table
S5 and Table S6). A directed acyclic graph depicting the relation-
ships between all variables used in our mediation analysis can be
found in Figure S2.

DNAMethylation-Based Aging Measures and Health
Outcomes in Multiplicative Models
Although our mediation analysis was focused on additive models,
we ran multiplicative Cox proportional hazards models for com-
parative purposes with other studies. PhenoAge age acceleration,
GrimAge age acceleration, and DunedinPACE were associated
with increased risk of CVD incidence and CVD mortality in ini-
tial models adjusted for chronological age, sex, center, and
genetic PCs (Table S7, Model 1). In models additionally adjusted
for eGFR, BMI, smoking status, LDL cholesterol, HDL choles-
terol, systolic blood pressure, hypertension treatment, and diabe-
tes status, the hazard ratio (HR) (95% CI) for CVD incidence was
similar for the interquartile range in GrimAge age acceleration
and DunedinPACE, but the association between PhenoAge age
acceleration and CVD incidence was not statistically significant.
A sensitivity analysis that further adjusted models for Houseman
cell proportions did not significantly change the HRs of the asso-
ciations of GrimAge age acceleration or DunedinPACE with

either CVD incidence or CVD mortality (Table S7, Model 4).
Hannum and Horvath age acceleration were not associated with
CVD incidence nor CVD mortality in any adjusted models
(Table S8).

Results from the competing risks analysis can be found in
Table S9. The subdistribution HRs obtained from the Fine-Gray
model were slightly attenuated, but generally still significant, for
both CVD incidence and CVD mortality. Thus, we considered
competing risks not to be an issue in this model.

Discussion
In this population-based study of American Indian adults with
a history of chronic exposure to As in drinking water, we found
a positive cross-sectional association between urinary As expo-
sure and increased epigenetic age acceleration or pace of aging
through several different DNA methylation-based measures of
aging, with the strongest associations for GrimAge age acceler-
ation and DunedinPACE. Under the assumption that urinary
As levels reflect long-term exposure and precede the changes
in DNA methylation, this study showed that DNA methylation-
based aging measures mediate the associations of As exposure
with incident CVD, fatal CVD, and all-cause mortality. In media-
tion models fully adjusted for sociodemographic and CVD risk
factors, both GrimAge age acceleration and DunedinPACE medi-
ated a relevant portion of the total effects of As exposure on
CVD. These results support a role for As exposure in accelerated
physiological aging, which consequently could be a mecha-
nism by which As contributes to increased CVD risk and all-
cause mortality independent of its known effects on CVD risk
factors.

Figure 1. (Left) Scatter plots of participants’ epigenetic age against their chronological age. (Middle) Distribution of participants’ chronological and epigenetic
ages. (Right) Simple correlations (Spearman’s q) between the chronological/epigenetic ages for each participant (n ¼ 2,323) in the Strong Heart Study.
Corresponding data is in Excel Table S1.
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We assessed the associations of epigenetic clocks with As
exposure and CVD incidence, CVD mortality, and all-cause
mortality. Previous studies have shown that first-generation
DNA methylation-based aging measures such as the Hannum

and Horvath clocks, which were trained based on chronological
age, tend to have weaker associations with aging-related mor-
bidity and mortality than second-generation measures, which
were explicitly trained on aging-related biomarkers.24,27,29

Figure 2. Distribution of participants’ (A) PhenoAge and GrimAge age acceleration values and (B) DunedinPACE pace of aging values by quartile of urinary
arsenic levels (lg=g creatinine). Epigenetic age acceleration is reported in years based on the residual method, and pace of aging is reported in years of biologi-
cal aging per chronological year. n=2,323 in the Strong Heart Study. Corresponding data is in Excel Table S2. Note: In panel A, four participants with
PhenoAge age acceleration values out of the graph’s range are not displayed (their data is still included in all analyses). Each box represents the interquartile
range (IQR) of the epigenetic age acceleration or pace of aging value, and each whisker represents values up to 1.5 IQRs away from the first or third quartile;
outlier values are beyond that.

Table 3. Effect estimates (95% CI) of the association between urinary arsenic and epigenetic aging measures (PhenoAge age acceleration, GrimAge age accel-
eration, and DunedinPACE) using multivariate linear regression in the Strong Heart Study (n=2,323). In the model per IQR, arsenic was modeled as log2
transformed and reported comparing an interquartile range (p25 vs. p75). The effect estimates for PhenoAge and GrimAge compare epigenetic age acceleration
values, reported in years based on the residual method. The effect estimate for DunedinPACE compares pace of aging values, which have a unit of years of bi-
ological aging per chronological year.

Model 1 Model 2 Model 3

Mean difference Effect estimate (95% CI) p-Value Effect estimate (95% CI) p-Value Effect estimate (95% CI) p-Value

PhenoAge
IQR (5.24 vs. 14:42 lg=g creatinine) 0.48 (0.17, 0.80) 0.04 0.48 (0.17, 0.80) 0.04 0.26 (−0:031, 0.55) 0.23
Q1 (<5:24) 0.00 (Ref) — 0.00 (Ref) — 0.00 (Ref) —
Q2 (5.24–8.56) 0.29 (−0:48, 1.10) 0.46 0.29 (−0:49, 1.10) 0.47 0.08 (−0:64, 0.79) 0.83
Q3 (8.56–14.42) 0.04 (−0:78, 0.86) 0.93 0.04 (−0:78, 0.86) 0.92 −0:25 (−1:00, 0.52) 0.53
Q4 (>14:42) 0.89 (0.00, 1.80) 0.05 0.88 (−0:01, 1.80) 0.05 0.38 (−0:45, 1.20) 0.37
GrimAge
IQR (5.24 vs. 14:42 lg=g creatinine) 0.80 (0.60, 1.00) 9:51× 10−8 0.59 (0.41, 0.77) 9:53× 10−6 0.44 (0.28, 0.61) 3:19× 10−4

Q1 (<5:24) 0.00 (Ref) — 0.00 (Ref) — 0.00 (Ref) —
Q2 (5.24–8.56) 0.44 (−0:06, 0.93) 0.09 0.39 (−0:05, 0.83) 0.08 0.27 (−0:13, 0.68) 0.19
Q3 (8.56–14.42) 0.83 (0.30, 1.40) 0.002 0.70 (0.23, 1.20) 0.003 0.57 (0.14, 1.00) 0.009
Q4 (>14:42) 1.60 (1.00, 2.20) 4:33× 10−8 1.20 (0.74, 1.80) 1:70× 10−6 0.91 (0.43, 1.40) 1:73× 10−4

DunedinPACE
IQR (5.24 vs. 14:42 lg=g creatinine) 0.011 (0.005, 0.018) 0.01 0.012 (0.006, 0.018) 0.005 0.009 (0.004, 0.015) 0.02
Q1 (<5:24) 0.00 (Ref) — 0.00 (Ref) — 0.00 (Ref) —
Q2 (5.24–8.56) 0.006 (−0:009, 0.021) 0.42 0.006 (−0:008, 0.021) 0.39 0.005 (−0:009, 0.018) 0.50
Q3 (8.56–14.42) 0.015 (0.001, 0.031) 0.06 0.016 (0.001, 0.031) 0.04 0.014 (0.000, 0.028) 0.04
Q4 (>14:42) 0.025 (0.0076, 0.042) 0.005 0.026 (0.009, 0.042) 0.003 0.019 (0.004, 0.034) 0.01

Note: Model 1 is adjusted for chronological age, eGFR, sex, center (Arizona, Oklahoma, and North Dakota and South Dakota), genetic PCs. Model 2 is additionally adjusted for smok-
ing status (current/former/never) and BMI. Model 3 is additionally adjusted for Houseman cell proportions. p-Values were taken from linear regression and compare epigenetic age
acceleration means per one interquartile range increase on arsenic. BMI, body mass index; CI, confidence interval; eGFR, estimated glomerular filtration rate; IQR, interquartile range;
PC, principal component; Q1, first quartile; Q2, second quartile; Q3, third quartile; Q4, fourth quartile; Ref, reference.
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Consistently, our study found that second-generation measures
were more strongly associated with an increased risk of both
CVD incidence and mortality than first-generation measures
such as Hannum and Horvath. Higher As exposure was also
more strongly associated with increases in second-generation
biological aging measures, suggesting that these measures are
more sensitive than their first-generation counterparts to As-
related DNAmethylation changes.

GrimAge and DunedinPACE were the strongest mediators of
the association between As exposure and CVD outcomes in our
study. Of note, both measures incorporated CVD-related bio-
markers into their design. GrimAge was trained on biomarkers
that have been associated with CVD risk, such as cystatin C, lep-
tin, and plasminogen activator inhibitor-1 (PAI-1),63–65 and
DunedinPACE was trained on the rate of change of biomarkers
such as BMI, blood pressure, glycated hemoglobin, total choles-
terol, and eGFR, which are known risk factors for CVD in the
SHS cohort.66–68 Nevertheless, the effect of As on CVD inci-
dence and mortality, as well as the mediating effect of these
DNA methylation-based aging measures, remained significant
even after adjusting for CVD risk factors in mediation models. It
is unclear from our analyses whether As may act on biological
processes of aging on a molecular level that then affects physiol-
ogy or whether this relationship reflects known effects of As on

multisystem physiological integrity. Nevertheless, our results
suggest that the association between As and CVD incidence and
mortality may include mechanisms not captured by traditional
CVD physiological parameters. The potential mediating role of
PhenoAge on the association between arsenic and CVD was less
clear. In addition, we found evidence of an exposure-mediator
interaction for this clock, which might lead to invalid mediation
estimates. Additional research is needed to identify the biological
reasons that might drive the different behavior of PhenoAge on
the association with As exposure and CVD as compared to
GrimAge and DunedinPACE.

Our mediation model results support that DunedinPACE can
still capture some of the CVD incidence and all-cause mortality
risk associated with As even after controlling for these factors.
This could be related to DunedinPACE capturing the trajectory
of risk factors over time or from measuring something beyond
these risk factors.

Strengths of this study include the community-engaged and
participatory nature of the SHS, which facilitated a large prospec-
tive cohort, a long follow-up period to follow participant out-
comes, and robust DNA methylation data for a large amount of
CpGs with current microarray technology (Illumina Infinium
MethylationEPIC BeadChip). This is the first time that DNA
methylation-based aging measures have been used in Native

Table 4. Number of incident CVD, fatal CVD, or all-cause death cases per 100,000 person-years attributable to a doubling in urinary arsenic levels through
(indirect effect) and not through (direct effect) changes in epigenetic age acceleration or pace of aging for each epigenetic aging measure (PhenoAge age accel-
eration, GrimAge age acceleration, and DunedinPACE) using mediation analysis by the product of coefficients approach as adapted by Lange and Hansen.
n=2,323 in the Strong Heart Study.

Outcome and measure Direct effect (95% CI) Indirect effect (95% CI) Total effect (95% CI) Relative IE (%)

CVD incidence (n=1,023)
PhenoAge 347 (114, 580) 33.8 (3.7, 74.5) 381 (144, 617) 8.9 (1.0, 26.3)
GrimAge 299 (65, 533) 80.8 (38.5, 133.0) 380 (144, 615) 21.3 (9.1, 57.1)
DunedinPACE 300 (68, 530) 87.6 (37.3, 147.5) 387 (149, 626) 22.6 (9.5, 56.9)
CVD mortality (n=316)
PhenoAge 163 (38, 286) 16.5 (1.3, 38.3) 179 (53, 305) 9.2 (0.7, 31.5)
GrimAge 130 (5, 255) 51.2 (24.8, 83.6) 181 (55, 307) 28.3 (12.0, 87.7)
DunedinPACE 142 (17, 267) 35.6 (13.5, 63.9) 178 (51, 305) 20.0 (6.9, 65.6)
Total mortality (n=1,055)
PhenoAge 712 (460, 963) 89.7 (11.7, 176.9) 801 (536; 1,067) 11.2 (1.6, 21.9)
GrimAge 610 (360, 860) 178.1 (98.4, 266.8) 788 (525; 1,052) 22.6 (12.8, 36.1)
DunedinPACE 661 (408, 914) 112.5 (49.4, 184.6) 774 (513; 1,035) 14.5 (6.6, 25.3)

Note: Models adjusted for chronological age, sex, center (Arizona, Oklahoma, and North Dakota and South Dakota), genetic PCs, smoking status (current/former/never), and BMI.
Epigenetic age acceleration is reported in years based on the residual method, and pace of aging is reported in years of biological aging per chronological year. BMI, body mass index;
CI, confidence interval; CVD, cardiovascular disease; IE, indirect effect; PC, principal component.

Table 5. Results of further adjustment of mediation models in Table 4; number of incident CVD, fatal CVD, or all-cause death cases per 100,000 person-years
attributable to a doubling in urinary arsenic levels through (indirect effect) and not through (direct effect) changes in epigenetic age acceleration or pace of
aging for each epigenetic aging measure (PhenoAge age acceleration, GrimAge age acceleration, and DunedinPACE) using mediation analysis by the product
of coefficients approach as adapted by Lange and Hansen. n=2,323 in the Strong Heart Study. Figure 3 is based on the data in this table.

Outcome and measure Direct effect (95% CI) Indirect effect (95% CI) Total effect (95% CI) Relative IE (%)

CVD incidence (n=1,023)
PhenoAge 348 (108, 588) 25.4 (1.1, 61.0) 374 (131, 616) 6.8 (0.3, 22.4)
GrimAge 307 (66, 548) 63.8 (28, 108.8) 371 (129, 612) 17.2 (6.7, 50.7)
DunedinPACE 319 (79, 559) 56.3 (18.7, 103.5) 376 (131, 620) 15.0 (4.9, 42.8)
CVD mortality (n=316)
PhenoAge 169 (36, 303) 12.2 (−0:2, 31.5) 182 (47, 316) 6.7 (−0:3, 26.8)
GrimAge 141 (6, 275) 42 (19.1, 70.5) 183 (48, 318) 23.0 (8.9, 80.5)
DunedinPACE 156 (22, 291) 23.7 (6.4, 46.9) 180 (44, 316) 13.1 (3.2, 48.9)
Total mortality (n=1,055)
PhenoAge 678 (423, 931) 74.4 (6.6, 152.0) 752 (487; 1,017) 9.9 (1.0, 20.4)
GrimAge 597 (342, 851) 139.3 (72.1, 215.0) 736 (473, 999) 18.9 (9.9, 32.0)
DunedinPACE 651 (394, 908) 74.8 (26.5, 132.3) 726 (464, 987) 10.3 (3.7, 19.7)

Note: Models adjusted for chronological age, sex, center (Arizona, Oklahoma, and North Dakota and South Dakota), genetic PCs, smoking status (current/former/never), BMI, eGFR,
LDL cholesterol, HDL cholesterol, systolic blood pressure, hypertension treatment, diabetes status. Epigenetic age acceleration is reported in years based on the residual method, and
pace of aging is reported in years of biological aging per chronological year. BMI, body mass index; CI, confidence interval; CVD, cardiovascular disease; eGFR, estimated glomerular
filtration rate; HDL, high-density lipoprotein; IE, indirect effect; LDL, low-density lipoprotein; PC, principal component.
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American populations. DNA methylation-based aging measures
need to be validated within diverse cohorts to assess their gen-
eralizability across different populations, as existing research
and clock design has mainly focused on cohorts with predomi-
nantly white European ancestry.21,28,69 Hence, the SHS adds
novel and valuable results to the overall understanding of epige-
netic aging.

Our study has several limitations. We restricted CVD out-
comes to 31 December 2009, as drinking water As levels
underwent a change in the SHS populations after the US
EPA’s Final Arsenic Rule was implemented in the years fol-
lowing 2006.43 The SHS does not have information on urinary
As levels in those years, so we are unable to assess any conse-
quent changes in CVD incidence or mortality or any corre-
sponding epigenetic mediation of these changes following
changes in As exposure. We only have one measure of urinary
As; however, based on our previous studies on repeated meas-
urements of urinary As levels over a 10-year period,39 the con-
stant high levels of As in drinking water in the absence of an
intervention,70 and the relatively low contribution of diet to
urinary arsenic in the SHS population,71 we believe that As ex-
posure was constant for decades in the SHS and hypothesize
that exposure preceded DNA methylation. However, the possi-
bility that DNA methylation influences As metabolism and
excretion cannot be ruled out. In addition, the possible mecha-
nisms by which As affects CVD risk remain an issue of ongoing
research, which makes it difficult to draw conclusions from
our mediation analyses. Finally, as discussed earlier, the DNA
methylation-based aging measures used in this study were
trained on predominantly white cohorts, and thus may not be
able to predict epigenetic aging in the SHS cohort as accurately
or comprehensively as in the original cohorts. Nevertheless,
GrimAge and DunedinPACE maintained statistically significant
associations with As exposure, as well as with CVD outcomes
and all-cause mortality in all analyses.

Last, mediation analysis only provides valid causal estimates
on the absence of unmeasured confounding, an assumption that is
impossible to verify in practice in epidemiological studies. We fit-
ted several different models adjusting for sets of variables that
might be potential confounders as typically done in studies of ar-
senic exposure and CVD.We even went one step further by adding
factors that might not be confounders but potential mediators of the
association between arsenic and CVD such as diabetes and blood
pressure, as our goal was to assess the potential mediating role of
the epigenetic biomarkers tested beyond those well-established
risk factors for CVD. Also, the existence of exposure-induced

mediator-outcome confounders cannot be ruled out. For example,
because arsenic exposure is known to affect DNA methylation,
dysregulations of biological pathways influenced by As might
induce confounding of associations between DNA methylation
measures of aging and CVD. A weighting approach was proposed
to deal with effect estimation in the presence of this kind of con-
founding.72 However, to our knowledge, no R package has been
developed to implement this approach. Experimental studies are
ultimately needed to assess the potential causal role of DNAmeth-
ylation aging on the association between As and CVD incidence
andmortality.

In conclusion, we found that the second-generation epigenetic
clock GrimAge and the pace of aging measure DunedinPACE
were each statistically significant mediators of the relationships
between As exposure and risk of CVD incidence, CVD mortality,
and all-cause mortality in the SHS cohort, even after adjusting for
sociodemographic confounders and CVD risk factors. Our study
brings epidemiological evidence to the hypothesis that As accel-
erates biological aging, thereby affecting the risk of age-related
morbidity and mortality. It also contributes valuable informa-
tion to the field of epigenetic aging research as the first study to
assess the predictive utility of several prevailing epigenetic
clocks in an American Indian cohort. Further investigation can
help to underpin the potential key role of biological aging in the
pathway of As exposure to CVD, all-cause mortality, and other
health outcomes, including the potential aging benefits of the
reductions in arsenic levels in drinking water that have taken
place in recent years.
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