1,499 research outputs found

    Synchronous clock stopper for microprocessor

    Get PDF
    A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor

    ASAP: An Automatic Algorithm Selection Approach for Planning

    Get PDF
    Despite the advances made in the last decade in automated planning, no planner out- performs all the others in every known benchmark domain. This observation motivates the idea of selecting different planning algorithms for different domains. Moreover, the planners’ performances are affected by the structure of the search space, which depends on the encoding of the considered domain. In many domains, the performance of a plan- ner can be improved by exploiting additional knowledge, for instance, in the form of macro-operators or entanglements. In this paper we propose ASAP, an automatic Algorithm Selection Approach for Planning that: (i) for a given domain initially learns additional knowledge, in the form of macro-operators and entanglements, which is used for creating different encodings of the given planning domain and problems, and (ii) explores the 2 dimensional space of available algorithms, defined as encodings–planners couples, and then (iii) selects the most promising algorithm for optimising either the runtimes or the quality of the solution plans

    Patient ECG recording control for an automatic implantable defibrillator

    Get PDF
    An implantable automatic defibrillator includes sensors which are placed on or near the patient's heart to detect electrical signals indicative of the physiology of the heart. The signals are digitally converted and stored into a FIFO region of a RAM by operation of a direct memory access (DMA) controller. The DMA controller operates transparently with respect to the microprocessor which is part of the defibrillator. The implantable defibrillator includes a telemetry communications circuit for sending data outbound from the defibrillator to an external device (either a patient controller or a physician's console or other) and a receiver for sensing at least an externally generated patient ECG recording command signal. The patient recording command signal is generated by the hand held patient controller. Upon detection of the patient ECG recording command, DMA copies the contents of the FIFO into a specific region of the RAM

    Immunogenicity of a low-dose diphtheria, tetanus and acellular pertussis combination vaccine with either inactivated or oral polio vaccine compared to standard-dose diphtheria, tetanus, acellular pertussis when used as a pre-school booster in UK children : a 5-year follow-up of a randomised controlled study

    Get PDF
    This serological follow up study assessed the kinetics of antibody response in children who previously participated in a single centre, open-label, randomised controlled trial of low-dose compared to standard-dose diphtheria booster preschool vaccinations in the United Kingdom (UK). Children had previously been randomised to receive one of three combination vaccines: either a combined adsorbed tetanus, low-dose diphtheria, 5-component acellular pertussis and inactivated polio vaccine (IPV) (Tdap-IPV, Repevax(®); Sanofi Pasteur MSD); a combined adsorbed tetanus, low-dose diphtheria and 5-component acellular pertussis vaccine (Tdap, Covaxis(®); Sanofi Pasteur MSD) given concomitantly with oral polio vaccine (OPV); or a combined adsorbed standard-dose diphtheria, tetanus, 2-component acellular pertussis and IPV (DTap-IPV, Tetravac(®); Sanofi Pasteur MSD). Blood samples for the follow-up study were taken at 1, 3 and 5 years after participation in the original trial (median, 5.07 years of age at year 1), and antibody persistence to each vaccine antigen measured against defined serological thresholds of protection. All participants had evidence of immunity to diphtheria with antitoxin concentrations greater than 0.01IU/mL five years after booster vaccination and 75%, 67% and 79% of children who received Tdap-IPV, Tdap+OPV and DTap-IPV, respectively, had protective antitoxin levels greater than 0.1IU/mL. Long lasting protective immune responses to tetanus and polio antigens were also observed in all groups, though polio responses were lower in the sera of those who received OPV. Low-dose diphtheria vaccines provided comparable protection to the standard-dose vaccine and are suitable for use for pre-school booster vaccination

    Forecasting in the light of Big Data

    Get PDF
    Predicting the future state of a system has always been a natural motivation for science and practical applications. Such a topic, beyond its obvious technical and societal relevance, is also interesting from a conceptual point of view. This owes to the fact that forecasting lends itself to two equally radical, yet opposite methodologies. A reductionist one, based on the first principles, and the naive inductivist one, based only on data. This latter view has recently gained some attention in response to the availability of unprecedented amounts of data and increasingly sophisticated algorithmic analytic techniques. The purpose of this note is to assess critically the role of big data in reshaping the key aspects of forecasting and in particular the claim that bigger data leads to better predictions. Drawing on the representative example of weather forecasts we argue that this is not generally the case. We conclude by suggesting that a clever and context-dependent compromise between modelling and quantitative analysis stands out as the best forecasting strategy, as anticipated nearly a century ago by Richardson and von Neumann

    Systematic infrared image quality improvement using deep learning based techniques

    Get PDF
    This is the final version. Available from SPIE via the DOI in this recordInfrared thermography (IRT, or thermal video) uses thermographic cameras to detect and record radiation in the longwavelength infrared range of the electromagnetic spectrum. It allows sensing environments beyond the visual perception limitations, and thus has been widely used in many civilian and military applications. Even though current thermal cameras are able to provide high resolution and bit-depth images, there are significant challenges to be addressed in specific applications such as poor contrast, low target signature resolution, etc. This paper addresses quality improvement in IRT images for object recognition. A systematic approach based on image bias correction and deep learning is proposed to increase target signature resolution and optimise the baseline quality of inputs for object recognition. Our main objective is to maximise the useful information on the object to be detected even when the number of pixels on target is adversely small. The experimental results show that our approach can significantly improve target resolution and thus helps making object recognition more efficient in automatic target detection/recognition systems (ATD/R).Centre for Excellence for Sensor and Imaging System (CENSIS)Scottish Funding CouncilDigital Health and Care Institute (DHI)Royal Society of EdinburghNational Science Foundation of Chin

    The discomforting rise of ' public geographies': a 'public' conversation.

    Get PDF
    In this innovative and provocative intervention, the authors explore the burgeoning ‘public turn’ visible across the social sciences to espouse the need to radically challenge and reshape dominant and orthodox visions of ‘the academy’, academic life, and the role and purpose of the academic
    corecore