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ABSTRACT   

Infrared thermography (IRT, or thermal video) uses thermographic cameras to detect and record radiation in the long-
wavelength infrared range of the electromagnetic spectrum. It allows sensing environments beyond the visual perception 
limitations, and thus has been widely used in many civilian and military applications. Even though current thermal 
cameras are able to provide high resolution and bit-depth images, there are significant challenges to be addressed in 
specific applications such as poor contrast, low target signature resolution, etc. This paper addresses quality 
improvement in IRT images for object recognition. A systematic approach based on image bias correction and deep 
learning is proposed to increase target signature resolution and optimise the baseline quality of inputs for object 
recognition. Our main objective is to maximise the useful information on the object to be detected even when the number 
of pixels on target is adversely small. The experimental results show that our approach can significantly improve target 
resolution and thus helps making object recognition more efficient in automatic target detection/recognition systems 
(ATD/R). 
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1. INTRODUCTION  
Infrared thermography (IRT, or thermal video) has been widely used in civilian and military applications such as 
surveillance, night vision and tracking, weather forecast, firefighting, facility inspections, etc. for collecting high quality 
data that are beyond the human visual perception range. The exceptional capacity of IRT comes from its capability to 
detect and record radiation in the long-wavelength infrared range of the electromagnetic spectrum [1]. Recent advances 
in IRT cameras have significantly improved the resolution and bit-depth of thermal images, which are traditionally 
regarded inferior to visual images, thereby making IRT images suitable and widely used in the scenarios with high value 
targets. For this reason, automatic detection and recognition of these targets has raised increasing interest in both 
academia and industry [2].  

Object detection and recognition in IRT images collected under real-world settings is still a challenging research topic in 
computer vision. Such images are usually acquired at a very long distance, leading to extremely low values of pixels-on-
target. A further challenge comes from the nature of IRT imaging: if the temperature of the object of interest is similar to 
the background, the contrast will be severely compromised. These adverse effects emerge as significant obstacles that 
degrade the performance of automatic object detection/recognition (ATD/R) in IRT images and hinder the application in 
practice. Fig. 1 shows two real-world image examples where the targets (a people carrier in (a) and an estate car in (b)) 
bear low resolution and poor contrast, which lead to high probability of false alarms in our developed ATD/R system 
(See Section 2.4). The “people carrier” target in Fig.1(a) has very low resolution (14×8 pixels), which is barely visible 
from a distance away. The “estate car” target in Fig.1(b) is almost blended with the background.  

This paper aims to address these image issues to improve their quality so that the performance of ATD/R performance 
will be increased. A systematic approach based on image restoration and deep learning is proposed to increase the target 
signature resolution and optimise the baseline quality of inputs for ATD/R. The key of this approach is to maximise 
useful information of the objects to be detected even when the number of pixels on-target is so small that a slight amount 
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of noise or non-uniformities would significantly degrade the detection performance. Our approach is composed of the 
following two essential steps: 1) A pre-processing and correction stage, which compensates undesired effects from the 
camera transfer function and small- and large-scale non-uniformities; 2) target signature resolution enhancement based 
on super-resolution and deep learning.  

Traditional super-resolution methods in literature adopt example-based strategies to learn priors so as to constrain the 
solution space [3]. Inspired by the exceptional feature learning and extraction of deep learning, most recent trends [3, 4] 
resort to deep learning based methods to jointly optimise all components of the objects rather than separately handle each 
of them. For example, a deep super-resolution Convolutional Neural Network (SRCNN) has been proposed and proved 
to achieve state-of-the-art image enhancement performance [3]. Comparing with traditional image super-resolution 
techniques, the SRCNN method adopts a fully connected CNN to map low resolution images to their higher resolution 
counterparts by learning the essential features of objects. This can significantly improve target signature resolution, 
which is essential to ATD/R.  

In order to apply SRCNN in our ATD/R system, this project collects a large set of real-world IRT data using a high-
quality thermal camera (Thales Catherine MP Camera [5]), and generates the first thermal dataset suitable for training 
deep learning models. To the best of our knowledge, this is the first work applying SRCNN for thermal image 
enhancement in order to improve ATD/R performance. We implement the whole image restoration system and test its 
impact to ATD/R using two widely used metrics: Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) 
[6]. Experimental results show that our proposed methodology can significantly improve image resolution and thus leads 
to more effective object detection and recognition for thermal images. 

 

 
Figure 1. Two IRT image examples. The vehicle objects are highlighted in the bounding box. 

 

2. DATA AND METHODOLOGY 
2.1 Data acquisition and preparation  

We firstly acquired raw images from surveillance video clips taken by Thales’s Catherine MP LWIR camera, which is a 
specialised thermal camera using micro-scanning technology to combine the fields of resolution (640x512). Three types 
of vehicles, people carrier (nine-seat minibus), estate car, and van, were employed as targets. The targets were acquired 
using the camera wide field of view at 100m, 200m, 300m, 400m, 500m and 600m, and six groups of video clips were 
collected, each consisting of approximate 8,000 IRT images. Fig. 1 shows two example images with the objects “people 
carrier” and “estate car” from a video clip collected at 600m away, respectively.  
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2.2 Image preprocessing and camera bias correction 

The video clips were acquired as raw data. Frames were extracted and converted to a suitable format to feed into the 
super-resolution algorithm.  

IRT images have a small amount of random noise uncorrelated from pixel to pixel and small-scale non-uniformities from 
pixel to adjacent pixel. In our improved approach, the effects of these problems are significantly reduced and become 
trivial because the input image is pre-processed by subtracting the average image of the whole image data so as to greatly 
decrease image variation during model training and CNN calculation. This therefore helps make the performance of the 
super-resolution approach more efficient.   

2.3 Image enhancement using SRCNN 

In order to enhance the quality of the original IRT images, this paper adopts a recently proposed SRCNN algorithm for 
image enhancement [3], whose weights were trained using the raw IRT data randomly selected from the dataset. This 
section provides a brief introduction to SRCNN.  

2.3.1 Introduction of the SRCNN method 

The overall idea of super-resolution is that a low-resolution image I is upscaled to a new image Y using bicubic 
interpolation and then a mapping function F is employed to recover the high-resolution image X from Y. To obtain 
F, a popular strategy is the following: first, generate patches from Y and represent them by a set of pre-trained bases, 
and thus obtain the feature maps of low-resolution images; second, a non-linear mapping is applied to the feature 
maps so that the representation of a high-resolution patch is generated; finally, the predicated high-resolution 
patches are averaged to produce the final full image. In SRCNN, these traditional operations are implemented by 
creating a three-layer CNN. The mapping F is conceptually obtained by a CNN framework, which consists of the 
following three operations (also shown in Fig. 2): 

(Operation 1) Patch extraction and representation 

This is the implementation of the first layer in Fig. 2. It can be described as an operation F1: 

                                                      F1(Y)=max(0, W1*Y + B1),                                                                        (1) 

where W1 and B1 are the filters and biases, respectively. W1 applies n1 convolutions on the input image, where the 
kernel size is c×f1×f1, with c the image channel. The output includes n1 feature maps. B1 is an n1-d vector associated 
with the filters. 

(Operation 2) Non-linear mapping  

The second layer in Fig. 2 is applied to implement the following operation: 

                                                  F2(Y)=max(0, W2* F1(Y) + B2)                                                                     (2) 

where W2 is a matrix of n1×1×1×n2 dimensions and B2 is an n2-d vector. Each of the outputs is an n2-d vector that 
conceptually represents a high-resolution patch. 

(Operation 3) Reconstruction  

This convolutional layer in Fig. 2 produces the final high-resolution image by applying the following operation: 

                                                  F(Y) = W3* F2(Y) + B3                                                                                  (3) 

where W3 is a matrix of n2× f3×f3×c dimensions, and B3 is a c-d vector. 
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Figure 2. The block diagram of the super-resolution process using SRCNN. Here f1, f2, f3 are the digital matrices. × denotes 
the convolutional operation. 
 

2.3.2 Training the model weights with the acquired IRT images 

The model weights, W1, W2, W3, in Eqs. (1-3), are calculated by applying the standard stochastic gradient descent 
(SGD) algorithm. This is a back-propagation CNN process for the 3-layer CNN in Fig. 2. 

The training set of 100 IRT images is randomly selected from our created IRT database. The following steps are 
performed to obtain the model weights. 

 The ground truth images are prepared as 32x32-pixel sub-images randomly cropped from the training set. 

 Low resolution images are pre-processed using Bicubic interpolation. 

 The initial filter weights of each layer are generated by drawing randomly from a Gaussian distribution 
with zero mean and standard deviation 0.001. The learning rates are 0.0001 for the first two layers and 
0.00001 for the last layer.  

2.3.3 Applying the obtained model weights in SRCNN 

In order to adapt the model to fit IRT data and enhance the images more effectively, we integrate the trained model 
weights into the SRCNN model instead of the original default weights. Thus, the collected IRT images can be 
improved properly according to the acquisition environment and modality properties in practice. 

 

2.4 Validation 

The validation of the proposed methodology is performed in our developed ATD/R system. We implement the system 
using the Caffe development platform [7], which supports the state-of-the-art Faster-RCNN technique for object 
detection and recognition [8]. Our specific validation focuses on vehicle surveillance based on IRT data.  

We firstly use the improved images as the training set to train the CNN model in our developed ATD/R system. The 
training set consists of 2197 ground truth images, acquired via the camera’s wide angle-of-view at the distances varying 
from 100m to 400m. This obtained new model is named as the super-resolution based model, which is used to conduct 
the object detection and recognition task in the ATD/R system. We then evaluate the model using a test dataset 
consisting of 575 ground truth images, acquired from the same camera view at different distances varying from 100m to 
600m. The ATD/R system outputs the detected vehicles and types with the corresponding probabilities which can be 
interpreted as confidence values for detection/recognition. Finally, the object with the highest probability is treated as the 
recognised vehicle. The Receiver Operating Characteristic (ROC) curve is employed to assess the overall performance of 
the proposed approach. 
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3. RESULTS AND DISCUSSION 
We employ Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) as performance metrics. Generally, a 
higher PSNR indicates that the image reconstruction contributes to higher image quality in terms of its difference with a 
reference image. SSIM can measure the similarity between the original image and the reconstructed version in a 
consistent way closer to human visual perception than traditional methods (e.g., PSNR) [6]. As shown in Table 1, our 
enhancement approach yields images that have higher average PSNR and SSIM in all experiments, where the PSNR and 
SSIM is obtained by averaging the gains over all test images of each class. Fig. 3 shows two examples of the SSIM index 
maps, which confirm that the reconstructed images can keep the structures of the images well, especially the vehicle 
structure is preserved in a good manner so that the objects can be detected with high accuracy in ATD/R. 

Table 1.  The results of PSNR (dB) and SSIM in the enhanced images. The values presented are the average over the test 
dataset. 

 PSNR SSIM 
People Carrier 53.6 0.977 

Estate Car 53.7 0.978 

Van 52.1 0.975 

 

 

 
Figure 3. Examples of the generated super-resolution images (Col. (c)) and their SSIM Map (Col.(b)). The case of the 100m 
view (First row) is with PSNR=52.9dB and SSIM=0.9765; the case of the 200m view (Second row) is with PSNR=53.3 dB 
and SSIM=0.9769. 

 

To evaluate the performance of improving image quality with the proposed approach, we use the enhanced training 
dataset to train the CNN model in the developed ATD/R system. The trained model is used to detect and recognise 
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objects in the test IRT dataset. The recognition results, represented by ROC graphs, are shown in Fig. 4. The ROC curve 
in blue shows the results from the original CNN model (raw model), which does not apply the proposed enhancement 
process. It can be seen that the Area Under Curve (AUC) obtained using the raw model is 0.92. The ROC curve in cyan 
is the obtained result from our proposed image enhancement method, which clearly illustrates better performance, with 
AUC reaching 0.96. It is worth noticing that, after adopting the proposed image enhancement approach, the true positive 
rates of the ATD/R system increase sharply during the false positive rates range of 0 to 0.2. We can interpret that the 
false recognitions are corrected from the obtained more accurate features through improving the quality of the training 
set.   

 
Figure 4. The ROC curves of the recognizing probabilities using our developed ATD/R system. Two models are used to 
generate the results: raw model and improved model. The ROC curve in blue denotes the raw model that is trained using the 
raw dataset; the ROC curve in cyan denotes the improved model using enhanced training images. 

Table 2 specifically gives the detection confidences of the objects shown in Fig. 1, and provides some insight about the 
method. Before applying the proposed image enhancement method, the top three detection probabilities are: people 
carrier, 0.311699; estate car, 0.875782; and van, 0.0154172. Under these results, the target would be classified as an 
estate car since it has the highest detection confidence. However, if we check the ground truth, the target is actually a 
minibus. This error is clearly corrected by adopting the proposed methodology. The second row in Table 2 shows that, 
after image enhancement, the detection probability of “people carrier” is the highest among the three. Therefore, the 
ATD/R system can correctly recognise the target that was wrongly interpreted in the absence of image enhancement. 
Another example in Table 2, for the vehicle “estate car” in Fig. 1(b), exhibits detection confidence increasing from 
0.205708 to 0.483660 after the data enhancement.  

As shown by the ROCs, although the overall detection and recognition performance is improved, the small size of the 
objects at distant view can still cause some false positives. Due to the limited number of pixels on the small object 
signature being presented, the enhancement process may generate inaccurate feature information, leading to false 
positives. For example, a people carrier target is initially detected as a “people carrier” correctly with confidence of 
0.729734 in the raw model; however, it is wrongly detected as an “estate car” with confidence of 0.772193 after the 
enhancement processing. This issue can be gradually improved by refining the training set in future work so that the 
ATD/R system can obtain more accurate feature information for recognition. In our system, such false positives 
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introduced by the enhancement process are rare and considerably outweighed by the significant performance gain. In 
fact, the ROCs show that the true positive ratios have been greatly improved after the enhancement process. 

Table 2.  The recognition results of Fig. 1 using raw training dataset and enhanced training dataset, respectively. The values 
presented denote the probabilities of each recognised vehicle type. The ground truths of Fig.1(a) and (b) are “People 
carrier” and “Estate Car”, respectively.  

 People Carrier Estate Car Van 

Using raw training 
dataset (Fig. 1(a)) 

0.274491 0.875782 0.0154172 

Using enhanced training 
dataset (Fig. 1(a)) 

0.311699 0.275520 0.0202263 

Using raw training 
dataset (Fig. 1(b)) 

0.000419 0.205708 0.0014541 

Using enhanced training 
dataset (Fig. 1(b)) 

0.001150 0.48366 0.0025878 

 

4. CONCLUSION 
This paper presents a systematic approach to improve IRT images for further automatic target detection and recognition. 
Our approach applies a CNN-based super-resolution method to improving the image quality, especially for the cases of 
long-distance view. Evaluation results show that the proposed approach has helped in improving the performance of the 
developed ATD/R system significantly, and thus validates the whole methodology. The study suggests that further work 
including developing advanced super-resolution methods, incorporating appropriate denoising techniques, and 
integrating the methods for creating a fully deployable system can be valuable extensions to the current method. 
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