168 research outputs found

    Stump appendicitis.

    Get PDF
    Stump appendicitis is a rare and late complication following appendectomy and can often be overlooked. Our case details a 42-year-old male who presented to the Emergency Department with right-sided lower abdominal pain, nausea, and vomiting. A computed tomography scan of his abdomen and pelvis demonstrated a tubular, fluid-filled structure with surrounding inflammatory changes at the level of the patient\u27s appendectomy clips with a 2.3-cm calcified intraluminal stone. Findings were concerning for stump appendicitis with appendicolith. He was admitted and taken to the operating room for a laparoscopic stump appendectomy. Stump appendicitis should always be considered in the differential diagnosis to prevent potentially serious complications

    <em>Enterococcus faecalis</em> Infection Causes Inflammation, Intracellular Oxphos-Independent ROS Production, and DNA Damage in Human Gastric Cancer Cells

    Get PDF
    Background: Achlorhydria caused by e.g. atrophic gastritis allows for bacterial overgrowth, which induces chronic inflammation and damage to the mucosal cells of infected individuals driving gastric malignancies and cancer. Enterococcus faecalis (E. faecalis) can colonize achlohydric stomachs and we therefore wanted to study the impact of E. faecalis infection on inflammatory response, reactive oxygen species (ROS) formation, mitochondrial respiration, and mitochondrial genetic stability in gastric mucosal cells. Methods: To separate the changes induced by bacteria from those of the inflammatory cells we established an in vitro E. faecalis infection model system using the gastric carcinoma cell line MKN74. Total ROS and superoxide was measured by fluorescence microscopy. Cellular oxygen consumption was characterized non-invasively using XF24 microplate based respirometry. Gene expression was examined by microarray, and response pathways were identified by Gene Set Analysis (GSA). Selected gene transcripts were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Mitochondrial mutations were determined by sequencing. Results: Infection of MKN74 cells with E. faecalis induced intracellular ROS production through a pathway independent of oxidative phosphorylation (oxphos). Furthermore, E. faecalis infection induced mitochondrial DNA instability. Following infection, genes coding for inflammatory response proteins were transcriptionally up-regulated while DNA damage repair and cell cycle control genes were down-regulated. Cell growth slowed down when infected with viable E. faecalis and responded in a dose dependent manner to E. faecalis lysate. Conclusions: Infection by E. faecalis induced an oxphos-independent intracellular ROS response and damaged the mitochondrial genome in gastric cell culture. Finally the bacteria induced an NF-kappa B inflammatory response as well as impaired DNA damage response and cell cycle control gene expression

    Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria

    Get PDF
    BACKGROUND & AIMS: To explore the hypothesis that selective immune responses to distinct components of the intestinal microflora induce intestinal inflammation, we characterized disease kinetics and bacterial antigen-specific T-cell responses in ex germ-free interleukin 10 -/- and wild-type control mice monoassociated with Enterococcus faecalis , Escherichia coli , or Pseudomonas fluorescens . METHODS: Colitis was measured by using blinded histological scores and spontaneous interleukin 12 secretion from colonic strip culture supernatants. Interferon gamma secretion was measured from mesenteric or caudal lymph node CD4 + T cells stimulated with bacterial lysate-pulsed antigen-presenting cells. Luminal bacterial concentrations were measured by culture and quantitative polymerase chain reaction. RESULTS: Escherichia coli induced mild cecal inflammation after 3 weeks of monoassociation in interleukin 10 -/- mice. In contrast, Enterococcus faecalis-monoassociated interleukin 10 -/- mice developed distal colitis at 10-12 weeks that was progressively more severe and associated with duodenal inflammation and obstruction by 30 weeks. Neither bacterial strain induced inflammation in wild-type mice, and germ-free and Pseudomonas fluorescens-monoassociated interleukin 10 -/- mice remained disease free. CD4 + T cells from Enterococcus faecalis- or Escherichia coli-monoassociated interleukin 10 -/- mice selectively produced higher levels of interferon gamma and interleukin 4 when stimulated with antigen-presenting cells pulsed with the bacterial species that induced disease; these immune responses preceded the onset of histological inflammation in Enterococcus faecalis -monoassociated mice. Luminal bacterial concentrations did not explain regional differences in inflammation. CONCLUSIONS: Different commensal bacterial species selectively initiate immune-mediated intestinal inflammation with distinctly different kinetics and anatomic distribution in the same host

    Identification of surface proteins in Enterococcus faecalis V583

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surface proteins are a key to a deeper understanding of the behaviour of Gram-positive bacteria interacting with the human gastro-intestinal tract. Such proteins contribute to cell wall synthesis and maintenance and are important for interactions between the bacterial cell and the human host. Since they are exposed and may play roles in pathogenicity, surface proteins are interesting targets for drug design.</p> <p>Results</p> <p>Using methods based on proteolytic "shaving" of bacterial cells and subsequent mass spectrometry-based protein identification, we have identified surface-located proteins in <it>Enterococcus faecalis </it>V583. In total 69 unique proteins were identified, few of which have been identified and characterized previously. 33 of these proteins are predicted to be cytoplasmic, whereas the other 36 are predicted to have surface locations (31) or to be secreted (5). Lipid-anchored proteins were the most dominant among the identified surface proteins. The seemingly most abundant surface proteins included a membrane protein with a potentially shedded extracellular sulfatase domain that could act on the sulfate groups in mucin and a lipid-anchored fumarate reductase that could contribute to generation of reactive oxygen species.</p> <p>Conclusions</p> <p>The present proteome analysis gives an experimental impression of the protein landscape on the cell surface of the pathogenic bacterium <it>E. faecalis</it>. The 36 identified secreted (5) and surface (31) proteins included several proteins involved in cell wall synthesis, pheromone-regulated processes, and transport of solutes, as well as proteins with unknown function. These proteins stand out as interesting targets for further investigation of the interaction between <it>E. faecalis </it>and its environment.</p

    Global metabolic response of Enterococcus faecalis to oxygen

    Get PDF
    Oxygen and oxidative stress have become relevant components in clarifying the mechanism that weakens bacterial cells in parallel to the mode of action of bactericidal antibiotics. Given the importance of oxidative stress in the overall defense mechanism of bacteria and their apparent role in the antimicrobial mode of action, it is important to understand how bacteria respond to this stress at a metabolic level. The aim of this study was to determine the impact of oxygen on the metabolism of the facultative anaerobe Enterococcus faecalis using continuous culture, metabolomics and 13C-enrichment of metabolic intermediates. When E. faecalis was rapidly transitioned from anaerobic to aerobic growth, cellular metabolism was directed towards intracellular glutathione production and glycolysis was upregulated two-fold, which increased the supply of critical metabolite precursors (e.g. glycine and glutamate) for sulfur metabolism and glutathione biosynthesis as well as reducing power for cellular respiration in the presence of haemin. The ultimate metabolic response of E. faecalis to an aerobic environment was the upregulation of fatty acid metabolism and benzoate degradation, which was linked to important changes in the bacterial membrane composition as evidenced by changes in membrane fatty acid composition and the reduction of membrane-associated demethylmenaquinone. These key metabolic pathways associated with the response of E. faecalis to oxygen may represent potential new targets to increase the susceptibility of this bacterium to bactericidal drugs.This work was funded by the HRC (Health and Research Council of New Zealand) and the FCT (Portuguese Foundation for Science and Technology), with grant reference SFRH/BD/47016/2008

    Enterococcal colonization of infants in a neonatal intensive care unit: associated predictors, risk factors and seasonal patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During and shortly after birth, newborn infants are colonized with enterococci. This study analyzes predictors for early enterococcal colonization of infants in a neonatal intensive care unit and describes risk factors associated with multidrugresistant enterococci colonization and its seasonal patterns.</p> <p>Methods</p> <p>Over a 12-month period, we performed a prospective epidemiological study in 274 infants admitted to a neonatal intensive care unit. On the first day of life, we compared infants with enterococcal isolates detected in meconium or body cultures to those without. We then tested the association of enterococcal colonization with peripartal predictors/risk factors by using bivariate and multivariate statistical methods.</p> <p>Results</p> <p>Twenty-three percent of the infants were colonized with enterococci. The three most common enterococcal species were <it>E. faecium </it>(48% of isolates), <it>E. casseliflavus </it>(25%) and <it>E. faecalis </it>(13%). Fifty-seven percent of the enterococci found were resistant to three of five antibiotic classes, but no vancomycin-resistant isolates were observed. During winter/spring months, the number of enterococci and multidrug-resistant enterococci were higher than in summer/fall months (p = 0.002 and p < 0.0001, respectively). With respect to enterococcal colonization on the first day of life, predictors were prematurity (p = 0.043) and low birth weight (p = 0.011). With respect to colonization with multidrug-resistant enterococci, risk factors were prematurity (p = 0.0006), low birth weight (p < 0.0001) and prepartal antibiotic treatment (p = 0.019). Using logistic regression, we determined that gestational age was the only parameter significantly correlated with multidrug-resistant enterococci colonization. No infection with enterococci or multidrugresistant enterococci in the infants was detected. The outcome of infants with and without enterococcal colonization was the same with respect to death, necrotizing enterocolitis, intracerebral hemorrhage and bronchopulmonary dysplasia.</p> <p>Conclusion</p> <p>In neonatal intensive care units, an infant's susceptibility to early colonization with enterococci in general, and his or her risk for colonization with multidrug-resistant enterococci in particular, is increased in preterm newborns, especially during the winter/spring months. The prepartal use of antibiotics with no known activity against enterococci appears to increase the risk for colonization with multidrug-resistant enterococci.</p

    β€œOne-Size-Fits-All”? Optimizing Treatment Duration for Bacterial Infections

    Get PDF
    Historically, antibiotic treatment guidelines have aimed to maximize treatment efficacy and minimize toxicity, but have not considered the evolution of antibiotic resistance. Optimizing the duration and dosing of treatment to minimize the duration of symptomatic infection and selection pressure for resistance simultaneously has the potential to extend the useful therapeutic life of these valuable life-saving drugs without compromising the interests of individual patients

    Rapid evolution of microbe-mediated protection against pathogens in a worm host.

    Get PDF
    Microbes can defend their host against virulent infections, but direct evidence for the adaptive origin of microbe-mediated protection is lacking. Using experimental evolution of a novel, tripartite interaction, we demonstrate that mildly pathogenic bacteria (Enterococcus faecalis) living in worms (Caenorhabditis elegans) rapidly evolved to defend their animal hosts against infection by a more virulent pathogen (Staphylococcus aureus), crossing the parasitism-mutualism continuum. Host protection evolved in all six, independently selected populations in response to within-host bacterial interactions and without direct selection for host health. Microbe-mediated protection was also effective against a broad spectrum of pathogenic S. aureus isolates. Genomic analysis implied that the mechanistic basis for E. faecalis-mediated protection was through increased production of antimicrobial superoxide, which was confirmed by biochemical assays. Our results indicate that microbes living within a host may make the evolutionary transition to mutualism in response to pathogen attack, and that microbiome evolution warrants consideration as a driver of infection outcome
    • …
    corecore