941 research outputs found
Pulsed Line Source Response of a Thin Sheet With High-Contrast Dielectric and Conductive Properties—A Time-Domain Analysis
published_or_final_versio
Local Analysis of Inverse Problems: H\"{o}lder Stability and Iterative Reconstruction
We consider a class of inverse problems defined by a nonlinear map from
parameter or model functions to the data. We assume that solutions exist. The
space of model functions is a Banach space which is smooth and uniformly
convex; however, the data space can be an arbitrary Banach space. We study
sequences of parameter functions generated by a nonlinear Landweber iteration
and conditions under which these strongly converge, locally, to the solutions
within an appropriate distance. We express the conditions for convergence in
terms of H\"{o}lder stability of the inverse maps, which ties naturally to the
analysis of inverse problems
A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem
We consider a transmission wave equation in two embedded domains in ,
where the speed is in the inner domain and in the outer
domain. We prove a global Carleman inequality for this problem under the
hypothesis that the inner domain is strictly convex and . As a
consequence of this inequality, uniqueness and Lip- schitz stability are
obtained for the inverse problem of retrieving a stationary potential for the
wave equation with Dirichlet data and discontinuous principal coefficient from
a single time-dependent Neumann boundary measurement
Factors affecting metal mobilisation during oxidation of sulphidic, sandy wetland substrates
Most metals accumulate as sulphides under anoxic conditions in wetland substrates, reducing their bioavailability due to the solubility of metal sulphides. However, upon oxidation of these sulphides when the substrate is occasionally oxidised, metals can be released from the solid phase to the pore water or overlaying surface water. This release can be affected by the presence of carbonates, organic matter and clay. We compared changes of Cd, Cu and Zn mobility (CaCl2 extraction) during oxidation of a carbonate-rich and a carbonate-poor sulphidic, sandy wetland substrate. In addition, we studied how clay with low and high cation sorption capacity (bentonite and kaolinite, respectively) and organic matter (peat) can counteract Cd, Cu and Zn release during oxidation of both carbonate-rich and carbonate-poor sulphidic sediments. CaCl2-extractability of Cu, a measure for its availability, is low in both carbonate-poor and carbonate-rich substrates, whereas its variability is high. The availability of Cd and Zn is much higher and increases when peat is supplied to carbonate-poor substrates. A strong reduction of Cd and Zn extractability is observed when clay is added to carbonate-poor substrates. This reduction depends on the clay type. Most observations could be explained taking into account pH differences between treatments, with kaolinite resulting in a lower pH in comparison to bentonite. These pH differences affect the presence and characteristics of dissolved organic carbon and the metal speciation, which in turns affects the interaction of metals with the solid soil phase. In carbonate-rich substrates, Cd and Zn availability is lower and the effects of peat and clay amendment are less clear. The latter can also be attributed to the high pH and lack of pH differences between treatments
Huntingtin exon 1 fibrils feature an interdigitated β-hairpin-based polyglutamine core
Polyglutamine expansion within the exon1 of huntingtin leads to protein misfolding, aggregation, and cytotoxicity in Huntington’s Disease. This incurable neurodegenerative disease is the most prevalent member of a family of CAG repeat expansion disorders. Although mature exon1 fibrils are viable candidates for the toxic species, their molecular structure and how they
form have remained poorly understood. Using advanced magic angle spinning solid state NMR, we directly probe the structure of the rigid core that is at the heart of huntingtin exon1 fibrils and other polyglutamine aggregates, via measurements of long-range intra- and inter-molecular contacts, backbone and side chain torsion angles, relaxation measurements, and calculations of
chemical shifts. These reveal the presence of β-hairpin-containing β-sheets that are connected through interdigitating extended side chains. Despite dramatic differences in aggregation behavior, huntingtin exon1 fibrils and other polyglutamine-based aggregates contain identical β-strand-based cores. Prior structural models, derived from X-ray fiber diffraction and computational analyses, are shown to be inconsistent with the solid-state NMR results. Internally, the polyglutamine amyloid fibrils are co-assembled from differently structured monomers, which we describe as a type of ‘intrinsic’ polymorphism. A stochastic polyglutamine-specific aggregation mechanism is introduced to explain this phenomenon. Weshow that the aggregation of mutant huntingtin exon1 proceeds via an intramolecular collapse of the expanded polyglutamine domain, and discuss the implications of this observation for our understanding of its misfolding and aggregation mechanisms
Generalized Fourier Integral Operators on spaces of Colombeau type
Generalized Fourier integral operators (FIOs) acting on Colombeau algebras
are defined. This is based on a theory of generalized oscillatory integrals
(OIs) whose phase functions as well as amplitudes may be generalized functions
of Colombeau type. The mapping properties of these FIOs are studied as the
composition with a generalized pseudodifferential operator. Finally, the
microlocal Colombeau regularity for OIs and the influence of the FIO action on
generalized wave front sets are investigated. This theory of generalized FIOs
is motivated by the need of a general framework for partial differential
operators with non-smooth coefficients and distributional data
Behavioral impacts of disentanglement of a right whale under sedation and the energetic cost of entanglement
Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Society for Marine Mammalogy for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 30 (2014): 282–307, doi:10.1111/mms.12042.Protracted entanglement in fishing gear often leads to emaciation through reduced mobility and foraging ability, and energy budget depletion from the added drag of towing gear for months or years. We examined changes in kinematics of a tagged entangled North Atlantic right whale (Eg 3911), before, during and after disentanglement on 15 Jan 2011. To calculate the additional drag forces and energetic demand associated with various gear configurations, we towed three sets of gear attached to a load-cell tensiometer at multiple speeds. Tag analyses revealed significant increases in dive depth and duration; ascent, descent and fluke stroke rates; and decreases in root mean square fluke amplitude (a proxy for thrust) following disentanglement. Conservative drag coefficients while entangled in all gear configurations (mean ± SD Cd,e,go = 3.4x10-3 ± 0.0003, Cd,e,gb = 3.7x10-3 ± 0.0003, Cd,e,sl = 3.8x10-3 ± 0.0004) were significantly greater than in the nonentangled case (Cd,n = 3.2x10-3±0.0003; P = 0.0156, 0.0312, 0.0078 respectively). Increases in total power input (including standard metabolism) over the nonentangled condition ranged 1.6%-120.9% for all gear configurations tested; locomotory power requirements increased 60.0%-164.6%. These results highlight significant alteration to swimming patterns, and the magnitude of energy depletion in a chronically entangled whale.Funding sources include NOAA Cooperative Agreement NA09OAR4320129, PO EA133F09SE4792, the M.S. Worthington Foundation, the North Pond Foundation, Sloan and Hardwick Simmons.2014-05-2
Ultrasonic water column probe speeds up testing of welds
Ultrasonic device consisting of a coaxial rod and transducer enclosed in a cylindrical probe which is filled with deionized or distilled water speeds up the testing of welds. Rubber diaphragm is molded to produce the desired test beam angle
The scattering of SH waves by a finite crack with a superposition based diffraction technique
The problem of diffraction of cylindrical and plane SH waves by a finite crack is revisited -- We construct an approximate solution by the addition of independent diffracted terms -- We start with the derivation of the fundamental case of a semi-infinite crack obtained as a degenerate case of generalized wedge -- This building block is then used to compute the diffraction of the main incident waves -- The interaction between the opposite edges of the crack is then considered one term at a time until a desired tolerance is reached -- We propose a recipe to determine the number of required interactions as a function of frequency -- The solution derived with the superposition technique can be applied at low and high frequencie
- …
