Generalized Fourier integral operators (FIOs) acting on Colombeau algebras
are defined. This is based on a theory of generalized oscillatory integrals
(OIs) whose phase functions as well as amplitudes may be generalized functions
of Colombeau type. The mapping properties of these FIOs are studied as the
composition with a generalized pseudodifferential operator. Finally, the
microlocal Colombeau regularity for OIs and the influence of the FIO action on
generalized wave front sets are investigated. This theory of generalized FIOs
is motivated by the need of a general framework for partial differential
operators with non-smooth coefficients and distributional data